
June 1i988 Report No. STAN-CS-88-1210 0

String -Functional Semantics for Formal Verification of
Synchronous Circuits

00 by
0

Alexandre Bronstein and Carolyn L. Talcott

DTIC
ELECTE

Department of Computer Science

Stanford University

Stanford, California 94305

RIIBUTION STATEMENT A
Approved for Public rele~wef

Ditribution Uzxliuxted

Oa WUN4 P.

String-Functional Semantics
for Formal Verification of Synchronous Circuits

Alexandre Bronstein & Carolyn L. Talcott
- VQ'JAL!tr

N, 2

A QH sir Fn

Copyri&t 0 1988 by Alexandre Bronstein and Carolyn L. Talcoit

.r. Thi research was partially affpxte by Digital Equipmnt Corp. and by ARPA contract N00039-84-C-02 1.

I ,a, , i ; jj !114 111111 11 , 1

,II I,!,

SForm Appr)oved

REPORT DOCUMENTATION PAGE OMBNo 07LOe8
IEp Dare Jun30. 1986

a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
unclassified

Za SECaPITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release:

lo DECLASS,FCATION/DOWNGRADING SCHEDULE Distribution Unlimited

. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

* . STAN-CS-88-1210

6a %AME OF PERFORMING ORGANIZATION 6b OF :CE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Computer Science Department (if applicable)

6c. ADDRESS IO. Srr,. and ZIP Code) 7b AOORESS(City, State, and ZIPCode)

Stanford University

Stanford, CA 94305

a NAME OF FUNDING, SPONSORING |8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

DARPA

SC ADDRESS (City. Stare, and ZIP Code) 10. SOURCE OF FUNOING NUMBERS
NPROGRAM PROJECT TASK WORK UNIT

1!400 Wilson Blvd. ELEMENT NO. NO NO. ACCESSION NO
Arlington, VA 22209

1 T iTL.E (include Security Classification)

String-Functional Semantics for Formal Verification of Synchronous Circuits

'2 PERSONA. AUTHOR(S)

Alexandre Bronstein and Carolyn Talcott

'3a TYPE O; REPORT '3b TIME COVERED 14 DATE OF REPORT (Year.MontrAOay) PAGE COUNT

IFROM _____TO ____June 1988 57

"6 SLP,'EENTARY NOATION

•7 COSATI CODES 18 SUBjECT TERMS (Continue on reverse if necessary and idntify by block number)

ELD GROUP SUBGROUP

'9 A3BSTRACT (Continue on reverse if necessary and identify by block number)

* A new functional semantics is proposed for synchronous circuits,
as a basis for reasoning formally about that class of hardware systems.

Technically, we efine an extensional semantics with monotonic
.~ngth-prservin- functions on finite strin.=s, and an intensional semantics
based on funct rnals on those functions. As support for the semantics

e we prove the equivalence of the extensional semantics with a simple
operational semantics, as well as a characterization of circuits which obey

* the "every loop ,s clocked" design rule.

Also, we develop the foundations in complete detail both to increase
confidence in the theory, and as a prerequisite to its future mechanization.-

,

20 DSTRIBLJ'ON/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

0 ONCLASSIFIEO/tJNLIMITED 0 SAME AS RPT 0 DTiC USERS
:2. ",E o1 RESPONSBE ,NDIVDOjAI 22b. TELEPHONE (Include Area Code) I 2C OFFICE SYMBOL

DO FORM 1473. 84 -AR 83 APR edtoon may be used until exhausted SECURITY CLASSIFICATION OF T'C,5 ,14j
Si' All Other editiong -to obsolete

Table of Contents
1. Introduction 1

1.1. Motivation 1
1.2. Solution proposed 1
1.3. Relation to other work 2
1.4. Notation 4

2. Mathematical Foundations of the Semantics 5
2.1. Basic Theory: CPOs, PCPOs, and Induction Algebras 5
2.2. Finite Depth domains 11
2.3. Strings of a domain, and String Induction Algebra 16

3. Semantics of Synchronous Circuits 25
3.1. Informal view 25

3.1.1. First basic intuition (circuit as a black box) 25
3.1.2. Second basic intuition (circuit as a system/network) 26
3.1.3. Extensional versus Intensional view of the world 27

3.2. Formal Syntax 28
3.3. Denotational Semantics 30
3.4. Mathematical characterization of "Every-Loop-is-Clocked" 32
3.5. Operational semantics and Equivalence with (extensional) Denotational semantics 35

4. Theoretical Applications of the Semantics 45
4.1. The MLP-caiculus 45
4.2. Relations on Synchronous Circuits 48
4.3. Relations between Synchronous Circuits and (Mealy) Sequential Machines 50

Index 55

N"

.'.', , ...

0

SW

Figure 2-1: Flat domain List of Figures 11
Figure 2-2: Finite depth CPOs 12

*-Figure 2-3: Strings on a flat domain 17

Figure 3-1: Running Sum Circuit 25

Figure 3-2: Example: Running Sum/Avg Sysd 29

ri*gre 3-3: Operational Semantics 36

Figure 3-4: Simulation Semantics 42

Figure 4-1: F is-a-pipeline-of G 49

Figure 4-2: Formal Comparison of Sequential Machines and Synchronous Circuits 50

1. Introduction

1.1. Motivation
Hardware design could benefit greatly from a precise computation theory of hardware systems. Current design

and validauon methods, such as simulation and testing are expensive and unreliable. The call for formal methods in
hardware design is heard more and more in the hardware community, and not only among theoreticians, but also
among practitioners as in [RusseUl-Kinniment-Chester-McLauchlan 85] (p.189):

As the designs get bigger this [validation] capability will not be provided by traditional simulators. Formal
verification of some other kind will need to be employed, which means that current languages will -icd to t:
redesigned to encompass formal techniques.

Formal verification, such as mechanical proof of correctness or transformation-based (inferential) design systems
-L [Burstall-Darlington 77], [Scherlis-Scott 83) . requires a formal underlying semantics, and this is what we mean by
a "precise computation theory of hardware systems".

This is not an entirely new concept! Such a formal theory has been around for a long time for a small class of
hardware systems: combinational circuits. Their semantics are given in terms of Boolean functions, and theoretical
applications include equivalences proofs using the Boolean calculus, minimization theorems, and many more
advanced theories such as fault-modelling and test-generation. In fact, the Boolean Algebra semantics is ubiquitous
tn the education of hardware engineers.

Our goal was therefore to find similarly natural and mathematically tractable semantics for more general hardware
systems, to serve as a basis for reasoning formally about hardware designs.

1.2. Solution proposed
Using functions on finite strings as a basic mathematical object, we have developed the core of a formal theory

for a wider class of hardware: synchronous systems/circuits.

The basic ideas and relation to the Boolean function semantics are fairly simple and we have made a special effort
to include a detailed, motivated, inforral explanation in section 3.1 . Technically we build Scott-style domains of
strings, and string-functions, and give the extensional semantics of a synchronous circuit in terms of monotonic
(with respect to less-defined-than and prefix) and length-preserving string-functions. Note however that in contrast
to other work in concurrency theory based on strings, we need only finite strings, and use as our primary ordering
the pomtwise extension of the flat ordering on the base domain, not the prefix ordering. Correspondingly, we solve
our fixed point equations in the string-function domain, and not in the string domain. The beginning of a calculus

based on these functional extensional semantics is shown among the possible theoretical applications in section 4.1.

In order to reason about synchronous systems in an even more general and powerful manner, we have added a
recent idea of software computation theory: intensional semantics. These give a mathematical handle on how an

-.0 -algongthm (or in our case, a circuit) computes its result, as opposed to just what the result is, i.e. its extensional
semantics. These concepts are studied in great depth in [Talcott 85] and [Moschovakis (3]. They provide a way to
compare precisely the objects we are trying to design, and hence provide the relations which will be at the core of
future 'guaranteed correct" transformation-based design systems [Scherlis-Scott 83]. A very limited taste of such
relations is given in section 4.2.

• ,These constitute the main ideas presented in this report. In order to support them however, we have proved a few
additional results about our semantics:

. We have given a semantic characterization of synchronous circuits which obey the "Every Loop is

..
N 'N'

2

Clocked" design rule, even though our semantics assign a meaning to all circuits (Luilt arbitrarily from
primitive components: registers and gates). We have not seen such characterization (in any form)
anywhere else in the hardware semantics literature.

* We have defined an operational semantics which is extremely simple, and basically a trivial circuit
simulation algorigthm, and proved its equivalence to our extensional semantics. We also believe this
result to be new in the context of hardware systems. although related operational-denotaiona
equivalence proofs have appeared in the context of dataflow [Faustini 82a] and more clearly
[Glasgow-MacEwen 87] within operator nets.

" We have shown how to apply these semantics to Sequential Machines (Mealy Machines [Booth 67].
[Hopcroft-UUman 79]) which are at the core of synchronous circuit design in the engineeringcommunity. This allows us to formally state that a certain circuit correctly implements a certain

sequential machine.

Finally, since our denotational semantics is based on a new domain of string-functions, and since ultimately all

claims of design correctness rely on sound underlying mathematics, and since a precise and thorough understanding
of the theory is an essential prerequisite to its mechanization (in a theorem-prover), we have taken extreme care to

develop the foundations in complete detail.

In order to reach the full generality that we needed, such as combinations of functions with arbitrary (and

* different) number of inputs, without any hand-waving, we found that we had to use some slightly technical tools,
such as Moschovakis' induction algebras. Moreover, we isolated two mathematical structures which came up

during the process and seemed to present some interest:

* Finite Depth domains, which are generalizations of flat domains, and

- * String domains, which are domains generated from a base domain with string operations.
To prevent confusion between these developments and their applications to hardware semantics, and spare less

mathematically inclined readers, we have placed them in a separate "Foundations" chapter (chapter 2).

1.3. Relation to other work
The original inspiration for this work came from software concurrency theory and the work of [Kahn 74] on

semantics of asynchronous communicating processes. The key idea there was to view each node as history- (or

string-)functional, the system as a list of string equations, and define the result to be the least solution (or fixed
point) of the system, in a domain of infinite strings ordered by the prefix relation. Other people then tried to exhibit

", ". operational models for which they could prove the appropriateness of the "Kahn-semantics" [Arnold 81], [Faustini

- 12a], [Faustini 82b] and references therein.

In our case, we have kept the basic idea of nodes being string-functional, but because of our synchronous context,
IN we were able to use a domain of finite strings, ordered by a pointwise extension of the flat ordering on the base

domain. Also, we made the abstraction to string-functions for circuits, which was only implicit in [Kahn 74].

Moreover we view the equations as defining string-functions instead of strings, and correspondingly solve our fixed

point system in a functional domain.

Much of the work derived from [Kahn 74] in concurrency theory has gone into trace theory, keeping the history

idea. but tossing away the functional abstraction, mainly to deal with limitations of [Kahn 74] in non-deterministic

contexts, as pointed out in [Brock-Ackerman 81]. These have been successfully applied to VLSI in [van de

* Snepscheut 85] and recently in [Dill 88] to asynchronous circuits. However synchronous systems do not present any

of the difficulties necessitating trace theory. And fundamentally, we believe the functional abstraction to be natural

and crucial for the design of large systems, for a rich calculus of synchronous circuits (analogous to the Boolean
SItcalculus),

and for the intuitive understanding
of systems.

0
,

-

ol

j4_w

" ..
"5

d ")

.",a ' Also inspired by the work of Kahn, and trying to apply these ideas to the semantics of hardware, are the works of

[Brookes 841 and recently WKoos 87]:

t

"." ; [Brookes 84] uses infinite strngs (viewed as functions on integzers) but is fairly informal and based only on one

L I.

,-,,,,-example. which does not have any feedback. His remark concerning the handling of feedback is essentially wrong
""" (or extremely imprecise) since the original state of the registers seems not to be kept in the syntactic object. even

. though in the presence of feedback, it can affect the final semantics immensely.

~[KMoos 871 in contrast is quite formal and thorough, and is very much based on Kahn's idea of functions on

Vjt.

oinfinite strings with a (slightly modified) prefix ordering due to Broy. This work is the most similar to ours that we

.. .- have found, and goes a long way towards achieving many of our goals, within a different mathematical environment
Band for the extensional pa s only. It is however, much broader in its scope of harwre systems it aims to model and

correspondingly, the theory is weaker. Moreover, the algebra of finite strings has many advantages for purposes ofmechanizing, ipcias incto ri Also, no proof equivalence with any operational model or other key property of

the semantics is given.

" Much other work related to ours falls under the category of "new hardware languages". These have evolved very
-similarly to software languages: from ad-hoc (assembly) to clearer (igh-level) to semantically cleaner (functional)

Just Like in softwait, very few of them really have formal underlying semantics Two notable exceptions are

!. [Sheeran 83] and [Johnson 83]:
ha [Seeran 83] uses FP [Backus 78] as a semantic base, and hence functions on sequences. Aside from an

rinsistence on a variable-free (and hence hardly readable) style, there is a lot of emphasis on algebraic laws, so

philosophically" our work is very related to hers.

[Johnson 83 uses a more standard applicative notation but puts much more emphasis on the language issue than

on the semantics. Most of the emphasis is on (informally) transforming recursive descriptions of the algorithm

which are not directly implementable in hardware, into other descriptions which are. The semantics only model a
C-. special restricted "stylized" kind of circuit (with one "output" line and one "ready" Line). The model-theoretic

*isemantics are sketched rapidly, are not very natur als are "infinite sequences of insntaneous operations"),

and are clearly not the main goal in his work.

.J Fintec o n mechanical correce proofs of hardware shares some important goals with us, although we
believe that semantics should be thoroughly studied first. The most impressive such result we know so far is [Hunt

o85 where two descriptions of a CPU (one of which was isomorphic to the actual hardware) were proved euivalent

0IN in the Boyer-Moore system. The semantics however, while quite clear in the combinational logic case, are more
fuzzy in t ie sequential case. where a "stylized" description is used with no formal justification. One price paid for

this is the lack of compositionality, i.e. the unability to combine easily two separate (sequential) specifications into a

emnbigger one. Also along the verification lines, we share a lot "in spirit" with Gordon's work in higheooerat logic:
aGordon 85 and related efforts. Technically however we differ significantly. Gordon's semantics are axiomatic:

. . hardware objects are associated with predicates (on functions of time), and systems are "ANDed" together. Besides
lputtg more emphasis on the model-theoretic aspects of our semantics, we have also defined our theory so that

hardware systems am descibable in just a first-order language. This may simplify automatic derivations, and in any

case gives us a greater choice of theorem -provers. Moreover, by studying properties of the algebraic structure (i.e.

".- • building a calculus) we can derive system -independent properties.

.. r on t -r r s.%a di r% %%
hadwr stEM are decial20js"is-rerlnug.Ti a ipiyauoai eiainadi n

4

1.4. Notation
We have tried as much as possible to use standard mathematical/logical notation: A , v => <=> V "

and are the usual logical symbols. co denotes the set of natural numbers (non-negative integers).

We've generalized slightly the tuple projection operator (denoted by subscripting): (xJ,..,xd i = xi , to take a tuple

of positions and return the corresponding sub-tuple of values: (xl,..,xn) i.. xi- A

For our "precise" proofs, we have a semi-formal notation: There are two columns: assertions on the left, and

justifications on the right. enclosed in double brackets, which can be mentally read as "because" or "by". Successful

completion of the proof is indicated by:

often indexed by the name of the theorem it proved. For example:
We have I=V/R [[Ohm, thin. 1

and P=V*I [[definition]]
.-. ... p =V -/R

and V =5.0 volts [[hypothesis]]

and R 0 ohm [[we've reversed Vcc and Gnd pins]]

* [[]]Thm Chip-is-Hot

In general, these proofs are most easily followed by skipping the individual justifications, i.e. reading the left
column only' Occasionally, if a step appears unclear, then checking the justification is useful.

Other notations for particular structures (such as strings) are defined as concepts are defined. An index of major
definitions is given at the end for 'random-access" readers. The report itself is "linearly" organized in definition-

theorem-proof form, each referring only to concepts previously defined or proved.

1

S -:
kS&.

0.'

.-:-

5

2. Mathematical Foundations of the Semantics

... 2.1. Basic Theory: CPOs, PCPOs. and Induction Algebras
-, The domains we consider are chain-complete partially ordered sets. However, since there are some terminology

variations across the various authors in the field, we specify here the structures we will use, as well as the main
results we'll need about them.

Many of these definitions and results can be found in various places and forms in [Manna 74] chapter 5, [de
Bakker 80] chapters 3 and 5. and [Schmidt 861 chapter 6.

Often however, these concepts (lub. continuity, fixed points) are obscured in standard treatmers because they are

defined in the specific context in which they are needed, which usually turns out to be a higher-order set where it is
hard to visualize things. We have tried to avoid that pitfall here, and have defined each notion in the simplest
structure in which it is meaningful.

Definition 2.1: Partial Order [PO]
<P. > is a Partial Order [PO] <=> P is a set A g is a binary relation on P which is

" reflexive: VX E P, x C x

_ *antisymmetric:Vx,y r P.(x Q y A y C x => x=y)

*transitive:Vx.vz P,(x Cy A yCz => xCz)

Definition 2.2: Upper Bound
Let <P,c> be aPO, S be asubsetofP,y E Pis anUpperBoundofS (inP) <=> Vx E S,x c y

Definition 2.3: Least Upper Bound [LUB]
Let<P. c>beaPO, SbeasubsetofP, y E P is a Least Upper Bound of S (in P) <=> yisanUpper
Bound ofS A Vz E P,zUpperBoundofS => y g z

Definition 2.4: Chain
Let<P, c>beaPO, SasubsetofP,Sisachain <=> Vx,y e S,x c y v y c x(i.e. c is total in S).

Note: we usually referto chains as indexed by an ordinal I: (xi)i e I Vi E Ix i C x, 1 .Thisdoes not
, reduce the generality.

Definition 2.5: Complete Partial Order [CPO]
%. <P, c> is a Complete Partial Order [CPO] <=> <P,Q>isaPO A every non-empty chain inP has aLUB.

Definition 2.6: Pointed Complete Partial Order [PCPO]
0 <P, z > is a Pointed CPO <=> <P, ; > is a CPO A there is a least element, usually called I, for c in P

(i.e. the empty chain also has a lub).

The distinction between CPOs and PCPOs is often glossed over, because most domains used in practice are
PCPOs ([Schmidt 86], [Melton-Schmidt 86] make the distinction). In our case, we will deal with structures which
are CPOs but not PCPOs, and therefore, we need the more general definitions.

Note that any PCPO is a CPO, and therefore all results true for CPOs apply to PCPOs. Also, an equivalent
definiuon of PCPOs not referring to CPOs can be given, simply by requiring that "every chain has a LUB", but our

Oz&0 L5 &N u

6

definition makes the dependency on the empty chain explicit.

Definition 2.7: Monotonic function on POs
Let <P 1 ><P .c,>be POs. fa function: PI -- PI, fismonotonic <=> V x,y E P. Ix CY =I

. ftx) Q 2 f(y)

Definition 2.8: Continuous function on [PJCPOs
Let <Pl.c I>, <P2-.-2> be PCPOs [resp. CPOs], f a function: PI -

' P2 f is continuous <=>
V x),, , [resp. non-empty] chain in P , (f(xi)), . ,has a lub A f(lub (xi) i e i) = lub(f(xi))IE I
where the lubs are taken in the appropriate domains.

By considering a chain of just two elements we immediately get:

Theorem 2.9: Continuous => Monotonic
Let <P 1,Z 1>. <P2,- 2>be CPOs, and f a function: PI -4 P2 '

f continuous => fmonotonic.

The next two properties are immediate, but ofen useful:

Theorem 2.10: Composition of monotonic functions
* Let <P". -

1> -<P 2, 2>' <P3,C 3>be POs. Let fbeafunction:P -- P 2 gbeafunction:P 2 -+ P3. fand g
are monotonic => gf : P is monotonic.1- 3, is monoonic

Theorem 2.11: Composition of continous functions
Let <PI 1,I> 1 <P 2 C

-
2>, <P3, 3> be CPOs. Let f be a function: PI - P2 , g be a function: P 2 - P 3 , f and

g are continuous => g . f : P? -+ P3 . is continuous.

Definition 2.12: Fixed Foint of a function
% Let S be an arbitrary set, f a unary function on S, x e S is a Fixed Point of f <=> f(x) = x

Note that the preceding definition is a common mathematical notion, and applicable to any structure, not just
CPOs. In Partially Ordered sets, we can additionally defi e the notion of a Least Fixed Point:

Definition 2.13: Least Fixed Point (LFP] of a function
Let <P, ; > be a PO, f a unary function on P, x E P is a Least Fixed Point of f <=> x is a fixed point of f
A

V VyEP,yfixedpointoff => x c y

One of the main reasons for using PCPOs as domains is that in these structures, a wide class of functions have least

fixed points, which moreover can be computed explicitely:

Theorem 2.14: Kleene
A continuous function f, on a PCPO <P, c>, has a LFP inP: lubf((.))ie c

Proof:

This is an extension of Kleene's 1st Recursion theorem [Kleene 67] . Many proofs of this result exist in the

Literature, in various forms. One closest to our notatior can be found in [Schmidt 86] p. 114.

11-Thn 2.14

A useful generalization in iMoschovakis 77] extends this result to families of PCPOs, and systems of continuous

% functions on these CPOs, (Moschovakis' results are actually more general and deal with arbitrary induction and big

ordinals. We restate them here in the simpler context of continuous induction, and consistently with our notations.)

0

07

Definition 2.15: Induction Algebra
<(P) J (i) J ,F >is aninduction algebra <=> V j - I , <P ,c: > is aPCPO A F is aset of functions
f: P × .X. X P i- P , containing the identity maps, and closed under composition with projections.

if J

By projection we mean a function of the form: (xl,..,xn) - x, for some i E L..n} .

By "closed under composition with projections" we mean that if g E F and f satisfies: f(x ...,X =

with tl_,rm given projections, then f E F.

Theorem 2.16: Kleene-Moschovakis
Let <(P)j E 1. g j)j J e, F > be an induction algebra. Let (fl"-,n) be a system of continuous functions in F,
whereVk E 1..n) ,fk: P x ... x P J-+ Pk ,thenthatsystem' saLFPinPJ x... x P :

lub[(f""fd)'(- " j... j)])i "

Proof:

U. See [Moschovakis 77], Lemmas 2.4 and 2.5 . These actually apply to monotone functions, and conclude that the

system has a fixed point:
lub[(fJf,)'(L j, -_ j.)]i e , with K some "big enough" ordinal.

Since in our case we are restricting ourselves to cont nuous functions, it is clear that (o is big enough:

We have f lub(P(±))i , ,] = lub(P l(I))i E , [[continuity of f]]

and (f'(. _))i = ())i " { I
lub(f '('-)) = lub(f(-L))i
f C IublN(-L))i e c,"] lub(fi(-))i r co

lub(f(-L))0 is a fixed point. And the same proof obviously carries through to a tuple of functions.

[[]]mn. 2.16

A few other results which help us build CPOs and PCPOs are enumerated below.

Theorem 2.17: Product of CPOs
The cartesian product of CPOs is a CPO (under the induced coordinate-wise ordering), and the lub of a chain of
tuples is the tuple of the lubs of the coordinates (i.e. the tupl-ing operation is continuous).

This generalizes immediately to finite product.

Theorem 2.18: Product of PCPOs
The cartesian product of PCPOs is a PCPO (under the induced coordinate-wise ordering).

This also generalizes immediately to finite product.

Theorem 2.19: Disjoint union of CPOs
The disjoint union of CPOs is a CPO (under the union of the ordering relations).

' This generalizes to arbitrary unions with the following definition: u (P)i={ x 3 i E I x p } '

" where the P "s are all disjoint.

aNote however that the disjoint union of PCPOs is not a PCPO (we need to add a new least element in order to

obtain a PCPO). It is common in Scott-style semantics to add that extra element without even mentioning it when

dealing with PCPOs. We will not do that. We still clearly have that the disjoint union of PCPOs is a CPO, which

e .. ,

-- -- - -- - -- , z AL,

8

s wiU be enough for our purposes.

As for Kleene's theorem, proofs for the preceding constructions can be found in [Schmidt 86].

%. Definition 2.20: Sub-CPO
Let <P. 7 > be a CPO. P1 is a subset of P, Pi is a sub-cpo of P <=> <P1'9stcsttoP > is a CPO.

Note the following two subtleties about sub-cpos:

e In general, subsets of CPOs are not sub-CPOs (counterexample: c+-l, with subset: co).
* In general. LUBs (of a single chain) in a CPO and a sub-CPO are not necessarily the same

(counterexample e)+2. sub-cpo: o)+2 - 1(o), chain: {0,1_..)).
The following notion is not as "standard" but very useful in building "nice" sub-CPOs, and we will use it

extensively in the rest of this work:

3... Definition 2.21: Strongly Admissible predicate on a CPO
. Let <P,c> be a CPO. Let obe a predicate on elements of P . 6 is Strongly Admissible on P <=> V (xi I

non-empty chain in P. (V i e I , o(xi)) => i(lub (xi) i 6 1)

In other words,"o carries to the lub". Note that this property is closely related to, but slightly stronger than, the
, notion of "admissible" predicate in computational induction [Manna 74].

Theorem 2.22: "Nice" Sub-CPOs
Let <P, c > be a CPO, let 6 be a strongly admissible predicate on P, then Pr,={ x e P I O(x) ,is a
sub-CPO of P. and the LUBs of chains in both domains are the same.

Proof:
Immediate by def. 2.21. Ie. we've defined "Strongly Admissible" to be exactly what we needed for this theorem to
be true: the work will be in proving that specific properties we're interested in are in fact strongly admissible.

• - ,[] '- . 2.22

% We now move on to function domains. We can easily extend the ordering of a Partially Ordered set to an
..r, ordering on its functions:
.%

Definition 2.23: Pointwise function ordering
Let <P 1 1>,< 2 ,>bePOs, f, gfunctions:P1 -P 2 ,fpint.Wg <=> Vx e PI,f(x) C 2 g(x).

It is immediate that c potnts is reflexive, antisymmetric and transitive. The subscript "potit." is usually

dropped since the correct relation can be inferred from context.

Note that this definition immediately applies to functions of arbitrary arity, by considering them as unary
OL) functions from the product PO.

Function domains on CPO: In the literature, one usually finds a proof that the set of monotonic functions on a
- CPO is a CPO, or that the set of continuous functions on a CPO is a CPO. However, many more function domains

on a CPO can be usefully built, as the next few theorems show.

* Theorem 2.24: PIP is 3 CPO.
Let <P' C> ,,, ' , > be CPOs, the set of all functions from P, to P 2 : P2pi 'under the pointwtse ordering, is
a CPO.

..

9

The proof is fairly standard. However, we give it because we will need to refer explicitely to the contruction of
the lub of a funcion-chai in many other occasions.

Proof:
Assume [h 1] <P1, g I> CPO, [h2] <P2, _ 2> CPO, and [h3] (fi)i r I non-empty chain in P2P .

Define (and this is the essence of the proof) f = Xx.lub(fi(x)) i e I , we prove that 1) f e P.Pi and 2) f is lub (f)I e I-

1) Let x E PI , arbitrary.
We have v i E I , C fi+1 [h3]

V i E I, f,(x) _, f,'(x) [[def. 2.23]]
fi(x) ' I E } is a non-empty chain in P2 [[def. 2.4]]
fi(x)., i r I} has a lub in P 2 [[h2]]

and this was done for arbitrary x,
f is a (well-defined) function from PI to P2

2) Let i E I , arbitrary.
We have V x r PI , fi(x) C-2 lub(fi(x))i1 I d[def. 2.3, LUB => Upper Bound]]

V x E P 2 , fi(x) C 2 f(x) [[construction of f]]
f-cf [[cdef. 2.23]]

'a. and this was done for arbitrary i,

f is an upper bound of (fi)i " [[def. 2.2]]

Assume [h4]g E P2P I Vi E I.fi g
Let x c P, arbitrary.
We have V i E I, fi(x) _ 2 g(x) [[h4, def. 2.23]]

lub(fi(x))i , - 2 g(x) [[def. 2.3]]
f(x) 9_ 2 g(x) [[construction of f]]

and this was done for arbitrary x,
f C_ g [d ef. 2.23]]

f =lub(f) I

* []01T. 2.24

As an immediate corollary we get:

"" " Theorem 2.25: PPa is a CPO.
* Let <P, c > be a CPO, the set of all functions (of arity n) on P: PP*, under the pointwise ordering, is a CPO.

As an immediate application of the preceding theorem (thin. 2.24) and our notion of strongly admissible
/ -. , predicates (thin. 2.22), we get a whole class of function CPOs:

Theorem 2.26: Function domains on CPOs
Let <Pt, 1>, <P2,c_2>be CPOs. Letb be astrongly admissible predicate on P/i, thenP2/PIn1= 6 f E

,P2 I 6(f) } . under the pointwise ordering, is a CPO. And, the LUB of a function-chain in P2Pn 6 is the

a.'. same as the LUB in P2 PI-2

10

V Theorem 2.27: Corollary: Monotonic functions CPO, Continuous functions CPO
Let <P. - 1> , <P,. z . > be CPOs. The following sets of functions, under the pointwise ordering, are CPOs:

* set of all monotonic functions: [P "- P2],

* s-t of all continuous functions: (P -- P,).

Proof:

o(ff = "f is monotonic" is strongly admissible on P2Pi:
P, Assume [hi] (fi)ie I non-empty chain of monotonic functions from P, toP,

We have f = X.lub(f(x)) i . = lub (fi) I [(construction of lub of function-chains]]

Let xy E P) I x 1 y

We have V i E I, fi(x) c 2 fi(y) [hi, fi is monotonic]]

and Vi e I, f (y) g f(y) [[construction of f]]

Vi e I, fi(x) g 2 f(y) [[trasitive]

, .. lub(f(x)) , I C_ 2 fRy) [[cdef. 2.3 1]
f(x) C 2 f(y) [[construction of f]

f is monotonic.

[U]]monotonic strongly admissible

,6f) = "f is contiuuous" is strongly admissible on P/i:

Assume [h2] (fi)ie I non-empty chain of continuous functions from P1 toP2

We have f = Xx.lub(fi(x)) i E = lub (fi)i construction of lub of function-chai;]]

and we already know that f is monotonic [[by above proof]
Let (xj)i I chain in P,

We have V j r= I, xj rt_ lub (x,), ![def. 2.3, LUB => Upper Bound]]

V j e I, fix) r . f(lub (xj)[c 1) f monotonic]]

LI: lub(f(x,))j . I 9 2 f(lub (xj)j . [[def. 2.3]

Let i E I, arbitrary.

We have f c f [[f=lub(fi)icI,LUB => UpperBound]]
.'. Vj E I fi(xj) C 2 xj) [[def. 2.23]]

4. and Vj E 1, f(x) 2 lub(f(xj))j [[def. 2.3, LUB => Upper Bound]]
.. V j E 1 , fi(xj) 9 2 lu .1j)j I[trantsitive]

Q ., .'. lub(fi(xjl)), , c; 2 lub(f(xj)), CC [de f . 2.3]]

and fi(lub (xj)jE 1) = lub(fi(xj)) j [[h2, f1 continuous]]

-. :" .'. fi(lub (xj)j , 1) ; 2 lub(f(xj))j 1
'' and this was done for arbitrary i,

- V i r I , f,(Iub (xj)j , 1) g Z lub(f(xj))j I

ad lub(f(lub (x) . I - 2 lub(f(x,)) , I ([def. 2.3] o

and f(lub (xj)j E 1) = lub(fi(lub (xj)j, 1))i [[construction off]

.. L2: f(iub (xj)j i 2 lub(f(x))j I

A -'~ •. f(lub (xj)j) lub(f(xY))j E I [[lines LI and L2]]

f is continuous.

1[[]continuout strongly admissible

, [IiaI-m. 2.27

N '

-pz.

'[. . 11- - - - -

Other strongly admissible functional predicates will appear i the next sections.

This completes our list of (slightly extended) standard notions. We now concentrate on particular classes of
domains which will be of essential use later.

2.2. Finite Depth domains

Definition 2.28: Flat domain
Let S be an arbitrary set. S_ (read "S lifted", or "S bottom") is the PCPO obtained by adding an extra element:

.and the binary relation: g deflned by: Vx,y e S.x c y <=> x=_L v x=y.

It is immediate that c is reflexive, antisymmetric and transitive, and that all c -chains have a lb.

A picture of S± is most convincing:

Figure 2-1: Flat domain

a-

4S.

Syntactic note about _L : the character "-_ " has no magical properties! In a different context (such as chapter 3),
we will free to use a different "least element" character more appropriate for that context.

An essential property of flat domains is that all chains of distinct elements are finite, in fact they are at most of

length 2. Many properties of flat domains (such as can be found in [Manna 74], chapter 5) generalize, often more
clearly, to arbitrary CPOs which have this "finite depth" property.

Moreover, the domain on which we will base our semantics for synchronous circuits is a finite depth domain. We
have therefore isolated this property here, as well as its consequences, so as to distinguish the abstract properties of

these domains from the idiosynchrasies of their application to the semantics of synchronous circuits.

Definition 2.29: Finite Deptb domain [FD-CPOJ
Let <P,g> be a CPO, <P, G>is of Finite Depth <=> any chaininPisa finite set.

. An equivalent way of characterizing FD-CPOs is the "Accumulation" property:

Theorem 2.30: Accumulation
Let <P, ; > be a CPO, <P, g > FD-CPO <=> V (xi)i I non-empty chain in P, 3 io E COI V i > io , Xi %

(and therefore also: lub(xi) = xi).

In other words, there is afinite index. ifter which the chain is constant. We refer to io as the "accumulation
point" and x as the "accumulation value" (or "lub").

12

Pr f:
(Should be intutively clear, given for completeness.)

Assume [h I] <P, _ > FD-CPO. [h2] (x,) i 6 1 arbitrary non-empty chain in P, we prove the Accumulation property
by contradiction:
Assume that it is false, we have: V i ea 3 ji >xi X Xj, A Xi # Xji

then we extract X= (xj to. which is a chain [[h.2, and subset of a chain is a chain]]

and X contains an infinite number of (distinct) elements [by construction]]

X is an infinite chain in P, contradicting hl.

Assume [hi] Accumulation property holds, [l2] (xi)i. I arbitrary chain.
We have if (xi) i c is empty, then it is finite [trivially]]
and if (xi) i . I is not empty

then 3ioE W I ViioX 1 =" [[hl,b2]]

(x)i3 I = I (xi), i = 0 i [[set extension!]]

(x,), e , is a finite set.
and this was done for an arbitrary chain, so P is a FD-CPO.1111-C.
]t[U]

[[]Th. 2.30

A few pictorial examples may help:

Figure 2-2: Finite depth CPOs

k.

aa ab ba bb

1

p.''

.I a L .b
• ..

%WL 2

I,'I
({ab}) arbitrary FD-CPO

Examples of FD-CPOs abound: It is obvious that any finite CPO is a FD-CPO (and any finite PO is a CPO). It is

also clear that FD-CPOs can be obtained as follows.

,MOIL

0 13

Theorem 2.31: Flat domains are FD-CP~s.

Proof:
Immediate.

Itl~m 2.31

Theorem 2.32: Product of FD-CPOs
The Cartesian product of FD-CPOs; is a FD-CPO.

Proof:
Immediate with the Accumulation property, by taking the max of the accumulation points for each coordinate.

Theorem 2.33: Disjoint union of FD-CP~s
The disjoint union of FD-CPOs is a FD-CPO.

Proof:
Immediate once you notice that any chain in the disjoint union is necessarily included in one of the original sets.

ff
1 1

hm.. 2.33

Finite Depth has interesting consequences regarding continuity issues, both for functions and functionals:

Theorem 2.34: Monotonic => Continuous in FD.CP~s
Let <P,C 1>' <P, 2 > be FD-CP~s, f afunction from P, to P,, f monotonic => fcontinuous.

Proof:

Should be intuitively clear. Given here for completeness.

Assme h] <Pg1 FD-CPO, [h2] <P2' Q2> FDCO [03] f a monotonic function: P, -+ P2 , [h4] (xi)i I
non-empty chain in P I.

Webhave 3lo E o) I V i - i ,xi= x =lub (x,)iI [Ehl, tbm.2.30 11
We have f(x1),iE I non-empty chain in P2 , h[3 and h4))
.'. i I E C') 1V i i If(xi) = Rxi)=ub(f(X,))I I h[2, thm. 2.30 1]

Let j = max(i0 .i)
We have x = lub (x)i c A f(Xj) =lub(f(Xi))ie I

f(lub (xi)i .: 1) = lub(f(x))i I
f is Continuous.

MIlTIzn. 2.34

Our result about functionals is a generalization of [Manna 74) theorem 5.1 , which states that functionals (on
monotonic functions, of anity n) on a flat domain, defined by composition of monotonic functions (of arity ni) and a
function variable ', are continuous.

Besides separating what is true in any CPO from what depends essentially on the finite depth property, we

generalize the result in three ways:

"To apply to FD-CPOs instead of just flat domains,

" To allow functions of any arity in the construction of the functional, as long as arities match. This

S0D

14

technicality corrects the fact that the theorem as stated by Manna does not even apply to the functional
defining "factorial"..

To apply to functionals on any sub-cpo of the set of monotonic functions (another technicality which we
will require in order to apply this result for our purposes in the next section).

The first theorem applies to any CPO, independently of finite depth considerations:

Theorem 2.35: Continuous functionals on a CPO
Let <P. _= > be a CPO, if Tr is a functional, on continuous functions: (P ' - P) defined by (arity-correct)
composition of continuous functions: (P P) for any m e o, and the function variable "F', then t is
continuous.

Our proof is similar in structure (induction cases) to [Manna 74]'s (partial) proof in the flat domain case, but

different in detail since we do not mingle considerations of "finite-depth" (accumulation property).

Proof:
The proof is by structural induction on '. There are 4 cases. In each case we have to check that

"t is closed (i.e. yields continuous functions when fed a continuous function as input),
r is monotonic,

T preserves lubs of function-chains.

[Base] case 1: c = XF.g, with g continuous function: p n -, p.

'r closed: immediate.
-t monotonic: immediate [[constant fun. (in any PO) is monotonic]]

,t preserves lubs of function-chains: immediate [[constant fun. (in any CPO) is continuous]]

[[]]c1, .

[Base] case 2: r = XF.F.
c closed: immediate [[Identity is always closed on any set!]]
"r monotonic: immediate [[Identity (in any PO) is monotonic]]
"t preserves lubs of function-chains: immediate [[Identity (in any CPO) is continuous]]

[Induction] case 3: "r = XF.g.,r(F),..,'tr(F)), with g continuous function: pm ... p
_t closed: immediate [[thi. 2.11, induction hyp. onrl..Tm
* monotonic:
Let f,,f 2 continuous functions: P -+ P I f, c: f.

, We have V j e { 1..m, "tj(f1) "tj(f2) -r monotonic, induction hyp.]]

Vx e P ,VFj 1 -m (Zj(fl)XX) 9 (Cj(f2)Xx) [[def. 2.23]]
V x E P n, g[(rIf(f1)Xx),.)Xx) Q,((f2)x)

S[[g monotonic, thim. 2.9]

"t(f:) 'r(f2) [[def. 2.23, definition of 'r]]

'r preserves lubs of function-chains:
Let (fi)i 6 , non-empty chain of continuous functions: P n -4 P
We have V j e L..m) ,tj(lub (f)i e I) = Iub[j(f1)]i I [[,z, continuous, induction hyp.]]

*.LI: V XEPV j E (E.m I , (tr(1ub (f,)iE 1))x) = lub(Tj(f1)Xx)I1 ,
[[construction of lub of function-chains)]

Let x E P ,arbitrary.
We have (@t(lub (fi)i,,)Xx) = g((r(lub (fi)i,,)Xx),..,(m(lub (fi)i I)Xx))

[[definition of]]1
" g(lub[(T,(f,))(x)xI u b[(Tm(f)]) [[line Li]]

. lub[g((tl(f))(x)".(tm(f,))(x))]i i [[g continuous]

. lub[(,t(fi))(x)]i , I [(definition of t 1]
... . (lub[t(f1)] i,)(x) [[construction of lub of function-chains]]

and this was done for arbitrary x,
t(lub (f) i 6 1) = lub[T(fi)]i , 1

[[]]c,, 3

[Induction) case 4: T = XF.F.(Tj(F),..'rn(F))
t closed: immediate [[thin. 2.11, induction hyp. on
r monotonic:

Let f1lf continuous functions on P I c_ f2

We have Vj E (L..n} , j(fl) c 'tj(f2) [["j monotonic, induction hyp.]]
..'. Vx e pn , Vj e (1..n} , (tj(fj))(x) C ('tj(f 2)Xx) [[def. 2.23]]

,.'. V x e P~ p, f2[(T1(f)Xx),..,('r,(f 1)Xx)] C f2[(t 1(f 2)Xx),..,(tn(f2)Xx)]
S[[f2 monotonic, thin. 2.9]]

% and V x e Pn , f1[(,t1 (f 1))(x)..,(tn(f)Xx)] C: f2[(TI(f 1)Xx),..t,(Cn(f)Xx)]

S[[f Q f 2 11

V X E pn f1[(C1(f)Xx),..,(tn(f)Xx)] r f2[(,t 1 (f2)Xx),..,(t(f 2)(x)]

CC [; transitive]
* .'T(f) 9 "T(f2) [[def. 2.23, definition of T]]

c preserves lubs of function-chaim:

Let (f)i • I non-empty chain of continuous functions on P n.
We have V j e { 1..n} , rj(lub (f)i• e) = lub[tcj(fi)]iE I [[tij continuous, induction hyp.]]

t ,, '1L2: V x E p n, V j E (1)..} ('tj(lub (fi)ia ,)XX) = lub[((%j(fi))(x)] i . I

S[[construction of lub of function-chains]]
Let x E P n, arbitrary.
We have (t(lub (f)i I))(x) -(lub (fi)i IX(lub (fii l))(x)""(rn(1ub (fi)i •))(x))

S[[definition of 't

... lub{fi((T(lub (fi)i,)Xx) '..,(t n(l ub (fi)iE •)Xx))}i• [[construction of lub of function-chains]]

.. .lubjfi(lub[(Tl(fi)Xx)]i, l""lub(Tn(fi)Xx)]i, l)}i, I [[lin L2]]

lub{lub[fi(('tl(fi)Xx),..,(tn(fi)Xx))]i I C [f continuous]]
* .. lub[fi(('Ct(fi)Xx)'..,(tn(fi))(x))Ii I [[lubi , l(lubi , ()) = lubi E (1

lub[-r(f,)Xx)j , [[definition of t]]
. (lub[T(f1)]3 1) [[construction of lub of function-chains]]

, and this was done for arbirary x,

t(lub (f1)1 E 1) = lub[(fi)]i c I

[[]]Thn. 2.35

Combining thi. 2.34 and thim. 2.35, we immediately get the result for Finite Depth CPOs:

*Theorem 2.36: Continuous functionals on a FD-CPO
Let <P, q > be a FD-CPO, if T is a functional, on monotonic functions: [P n -P P], defined by composition of
monotonic functions: [P P* p] for any m e o, and the function variable "F', then t is continuous.

And finally, noting that the proof of thim. 2.35 carries through to functionals defined on a sub-cpo of the set of

.

16

monotonic functions, as long as we assume that they are closed on that sub-cpo, we get our final result:

Theorem 2.37: Continuous functionals on a FD-CPO , general version
Let <P. c > be a FD-CPO. if -, is a functional, on any sub-cpo of the set of monotonic functions: [P" -+ P],
closed on that sub-cpo, defined by composition of monotonic functions: [Pm P] for any m E o, and the
function variable "F', then "r is continuous.

[11]Genralization of [Mamna 741 Thi 5.1

Note that this theorem (or thin. 2.36) are not true in arbitrary CPOs, as the following simple counterexample

shows:
Counter-example:

Let P = c+l, with the standard (ordinal order) P is a CPO.

Let g = .x.(if x = c then I else O)

We have g monotonic [[immediate verification]
Let -, = XF.g.F, T is a functional defined by composition of monotonic functions and the function variable "F'.

Let f = Xx.i (i.e. the constant function: i), V i E (0.

We have V i • co, f, is monotonic [[constant functions are monotonic]]

and V i E CO, fi < fi, I i.e. (fi)iE chain [[immediate]]

40 and lub (fi), =Xt x.to [[immediate verification]]

-t(lub (f.),e r = XX.1
We have V i • w , (fi) = Xx.O

•. lub('c(fi)), X x.O

.' "(lub (fi),)) lub(,(fi)i 6 c

[[]]counter-aMpIC

.- 2.3. Strings of a domain, and String Induction Algebra
A particular construction on domains which we have found useful in our semantics is the domain of (finite)

Strings on a domain. It is also from these domains that we noticed the generalizations from flat domain to finite

depth domain.

As in the previous section, we study the properties of String domains independently of their application to the

semantics of synchronous circuits so as to separate the general from the particular. (This also has the advantage of

- keeping the overall notation, and hence proofs, simpler.)

Definition 2.38: Strings of a partial order
Let <P, > be a PO, P =u (P ')i with the induced ordering, is a PO (disjoint union of cartesian products
of a PO). We call it: Strings of P.

Recall that when forming the disjoint union we are not adding any new elements (cf thm. 2.19).

*, Once again, a picture helps.

..

V

017

Figure 2-3: Strings on a flat domain

a b

V I b

0
p*:

p 3•w'-a
.

They key fact about the String construction is that it preserves the "niceness" of the underlying domain, to a great

extent:

Theorem 2.39: Strings on a CPO
<Pc>isaCPO => <P*, >isaCPO.

Proof:
Immediate by thm. 2.17 and thin. 2.19.

* [[]]Thmn. 239

and most importantly:

Theorem 2.40: Strings on a FD-CPO
. <P, c>is a FD-CPO => <P,>is aFD-CPO.

O

Proof:
-*., Immediate by thin. 2.32 and thin. 2.33.

U]n 2.40

* Note however that the String construction does not preserve "pointedness" (i.e. PCPO). In fact, we have a stronger
/: statement to the contrary:

I. Theorem 2.41: Strings do not have a least element

-0 'i " " .. - - ,- ,,

0
,m

*. 18

Let <P, c > be a PO, P non-empty => <P *_ c > has no least element.

Proof:
Assume [hi] <P. c>PO. [h2]P non-empty
Let e be the empty stnng (E P *)
We have Vxe PE P [cl](x cE => x=e) A [c2](Ecx => x=E)

g[[is induced coordinatewise ordering]]
Let a E P [[h2]]
We have a E P * (string of length 1. containing the element a)
Assume - least element ofP *

then -L cEand-I ca
S= [[cl and Ic E]

[c a [I c a]]

E = a, which is a contradiction. [[c2]]
[[]]mn. 2.41

This point was mostly made to bring out the fact that we are not studying the "usual" domain of strings under the
prefix ordering (for which E is a least element), instead we are constructing the String domain of an arbitrary PO,

The junction with "usual" strings will now be made, but the preceding remark will still be valid for the rest of this
work.

We consider the usual (slightly extended) string structure on P •

<P *, E,.,l I,<,.,lastO,abl(),lsto,rsto,l<',e>

Definition 2.42: String structure

0 E :) P * , (constructor) empty string.

. : Add : P * x P + P * , (constructor) add a character (to the right).

% I I : Length : P * -4 o , length of a string. (We assume the integers are included in P. or are encodable
in it, cf. [Moschovakis 71].)
Defined by: (l=0) A (Ix.uI=lxI+l)

5 : Prefix: P * x P - TFI, prefix relation on strings.
Definedby: (x<E <=> X=) A (x!y.u <=> x=y.u v x5y)
S : Concatenate : P x x P •

- P , concatenate two strings. We overload the "." symbol since we will
identify characters and strings of length 1. We will also sometimes omit the "." all together, when no
confusion can result.
Definedby: (x.E=x) A (x. (y.u) = (x. y).u, where the"." preceding "u" means "Add")

* last() : Last : P * P (destructor, partial) , last character of a string.
Defined by: last(xu) = u

* ablO : All-But-Last : P * - P * (destructor, partial), all characters of a string but the last one.
Defined by: abl(x.u) = x

I istO : First : P * -4 P (derived destructor, partial) , first character of a string.
Defined by: lst(u.x) = u

• rsto : Rest : P -4 P * (derived destructor, partial), all characters of a string but the first one.
Defined by: rst(u.x) = x

* " : "To the power" P x co -- P , make a string by Adding the same character a certain number of

'K 19

'." time.N:.
Defined by: uT" = uu..u "n times". or formally: (u 0 = E) A (U n 1

= uT n .u)

I : "At index/position" :P* x o - P. extract a character from a string.
Defined by: Letn =x,2...x- . We also use I- with 2 arguments to extract substrings:
X. I. ' denotes the corresponding substring of x if i j _ n, e otherwise. (x = xL..n) The formal
(recursive) definition is messy and uninteresting.

E : G is to "." (add) in string theory, what , is to"+ and what f is to "x" i number theory,
i.e. en1 ,U = ulU2..Un, where u is any character expression.

Form ally: (=0 in.) A (E , Iu = (E 21U) .nO i=_lii--- E ^ (vi= 1 U

- We also allow ourselves to expand this structure with additional (derived) operations whenever needed.

Terminology notes:

There are a few basic sting operations which are well-known in the literature: [Landin 651], [Burge 75],
[Friedman-Wise 76] and [Manna-Waldinger 85] among many others. However, there are no consistent notations.

,%rW We have therefore used our own, which we have tried to keep simple, and meaningful relative to the use we will
%Q have for them (describing synchronous system semantics).

0 The notation used for subscripting is taken from [Mason 86] and [Talcott 85]. Even though it is "heavier" than
simple subscripting, it allows subscripted string variables by differentiating between x, x1 (strings) and x-1j, x ,1

." (characters). [Note: if no confusion can result, i.e. in a context where no subscripted string names are used, then it is
reasonable to omit the arrow.]

Theorem 2.43: Preix
There is an equivalent definition of the Prefix relation which we will sometime use: V x,y E P ,x !5 y
<=> 3z c P y=x.z

Proof.
Immediate induction.

[U]]Thmn. 2.43

- ... We now study various function domains on string-CPOs:

Let <P, > , 2> be string-CPOs, it is immediate from ttm. 2.24 and thim. 2.27 that:
S2* : all functions from PI* toP2 * ,

* I P 2 *] : all r-monotonic functions from PI* to P 2 *'

(P1 I P2):all C-continuous functions from P1 * toP 2*,
% > are CPOs.

* There are however other classes of functions which are meaningful only in the string structure, and we are
interested in two such classes:

Definition 2.44: Length-Preserving [LPI function
Letfbeafunction:P*-- P 2 0.fisength-Preserving[LP] <=> Vx c P1*,lf(x)I=IxI

00

,': ;,Definition 2.45: <.monotonic function
"- ."Let fbe a function: P1 * P2*, fis _<-monotocic <=> V x,y e P , x < y => f(x) < f(y)

a 0 , -

.M

-, 20

Pronunciation note: c-monotonic can be read "L-monotonic" (short for "less-defined-than-monotoic). And

5 -monotonic can be read "P-monotonic" (for "prefix-monotonic").

Theorem 2.46: LP preserved by composition
Let <PI *, 1

> , <P-*. g 7 > and <P3* . 3 > be string-CPOs. Let f : P* ,P 2* and g : P2* - P3* ,
f and g

areLP => g.fP - P3*,isLP

Proof:

Immediate verification.

[U] Thm. 2.46

Theorem 2.47: <-monotonic preserved by composition
Let <P*c 1

> .<P.*,_c > and <P3*c_ 3> be strmng-CPOs. Let f: PI* + P 2* and g: P 2* -' P3*, f and g

are -- Monotonic => g. f:P1 * - P3* is <-Monotonic

Proof:

Immediate verification.

[[1]Thn. 2.47

Both LP and 5 -monotonic are in some sense "natural" properties for string of Finite Depth-CPOs, as the

following theorems indicate.

Theorem 2.48: LP is strongly admissible on FD-CPOs
Let <P1 I> , <P 2 g.> be FD-CPOs, " f is LP " is strongly admissible on P 2 .

Proof:

Assume [hli <P 11c 1> and <P2'c2> are FD-CPOs, [h2] (f) I non-empty chain ofLP functions fro= P1* toP 2*

We have f= kx.lub(f,(x)), e = iub (fi) [construction of lub of function-chain s1

Let x E P arbitrary
We have P* FD-CPO ([hi, and thin. 2.40]]

and (f,(x)) I non-emptychain in P 2* [h2]
i0 E Co I V i 2! io , f-i(x) =fio(x) = lub(fi(x))i [[thm. 2.30]]

f(x) = f (x)

0 • If(x)I = If 0(x)l
and If 0(x)l = IxI [i0. LP, 2]]

If(x)l = Ixl

and this was done for arbitrary x.,

fisLP.
6

W, "

,.

Theorem 2.49: < -monotonic is strongly admissible on FD-CPOs
SLet <P, 1> . 2, 2> be FD-CPOs, " fis 5-monotonic " is strongly admissible onPz*P

*.

* . Proof:

Assume [hi] <P 1, g I> and <P2 _2> are FD-CPOs, [h2] (f,), non-empty chain of !-monotonic functions from

Pl*toP2*

N0,

0 21

We have f = x.lub(fW(x)) . = lub (f) Ei [[construction Af lub of function-chains]]
Let x.v r P 1* I [h3] x < y,
We have P,* FD-CPO [[hI, and thin. 2.40]]
and t x)l) . f(y))E non-empty chains inP-* [[h2]]

1: 0 co vi i f-i(x)=f,(x)=lub(fi(x))i . [thin. 2.30]]

and iI E c)1 V i > i, f-i(y) = ft(y) = lub(f i(y)) i [Ithm. 2.30]
Let j=max(10 ,1 1)
We have fix) = f,(x) and f(y) = f(y)
and f(x) _ f.(y) [[h3, fj !<-monotonic, h2]]

fix) !5 f(y)

f is _ -monotonic

[t7]Thm 2.49

It is also obvious that if 6, is strongly admissible on P, and 62 is strongly admissible on P, then A A 02 is
strongly admissible on P.

Therefore we get:

* Theorem 2.50: Function domains on Strins of FD-CPOs
Let <P 1,c 1>, <P 2,9 _2> be FD-CPOs, P2 *i 1 0, where 6 is any conjunction of

%. & c -monotonic

.. ,, LP

e <-monotonic
is a CPO, in which the lub of function-chains is unchanged.

Proof:
0 Immediate by thin. 2.22 (sub-CPOs) and thm. 2.27 (for c-monotonic), thm. 2.48 (for LP) , and thin. 2.49 (for

' -monotonic).

[U!hh. 2.50

When trying to extend the notion of Length-Preservation to functions of arity > 1 , we find that the standard
cartesian product of string domains is inappropriate. Instead it makes sense to define LP on functions with
arguments all of the same length. We therefore define the following product on string domains:

Definition 2.51: String Cartesian Product
Let <Pt I I >- <P2*, C 2> be string-CPOs, we define their string cartesian product to be: P,* x = {(x,y)
E PI* x P 2] xi = lyl I , with the standard (induced) coordinate-wise ordering.

One way to think about this product is: P1 xP 2* - (P1 x P2)", up to tr nsformations from tuples of strings
to strings of tuples and vice-versa. Also, our definition is meaningful in the category of string-domains, as it
does not refer to the domains underlying the strings.

Notation: P-" = P x ... x P, n times. And if x denotes an element of P, then x will denote an element of P n;
the underline, instead of the usual overline, is intended to recall that x is a tuple of elements of equal length.

We can then immediately generalize the notions of Length-Preservation, <_-monotonicity and g -monotonicity to
functions: P1 * x ... xp -- P0* . thin. 2.50 also immediately generalizes to such functions.

For our purposes in giving semantics to sy-,;hronoms circuits, we are interested in functions (of various arities) on

% PL

-5.-.

d5"-"-"%.".X%-,;"•""", - . """" .4%

P * which are c -monotonic. -monotonic and Length-Preserving and defined by recursive systems of continuous

funcuonals on them. We therefore develop here the String Induction Algebra of a domain P:

Definition 2.52: MLPp",

Lct <P, z > be a FD-CPO ,MLPp., is the subset of the set of functions from P * n to P * defined by: MLPp,. =

P *P" - (c -monotonic A <_-monotonic A Length-Preserving) together with the standard (induced)
poinv ise function ordering.

It is an imm;iediate application of Thin. 2.50 that MLPp,. is a CPO, and is a "nice" sub-cpo of the set of monotonic

functions. however, by combining all 3 properties, we now get an additional property: Even if P has a least

•%loment. P *P * -does not have a least element (because no string is less than all others according to the pointwise

nr, ering). However, if P has a least element, then so does MLPp n. as is shown below.

* .ieorem 2.53: MLPp, is a PCPO

/ Let <P, c> be a FD-PCPO MLPpn is a PCPO with least element: Q = X x .-1 _I', and is a sub-cpo of the

set of monotonic functions: [P ' -4 P], in which the lub of function-chains is unchanged.

"1 ,Proof:

* Let F E MLP,n x e P*narbitray,letk=lxl

Wehave F(x)=Y'.. [[F is LP]

and Q(x).1k [[definition of Q]]

Vi E {1..kI , _y rrdefinitionof !]]

Vie {1 k. ,Q x)4icF(x), i

Q(x) -- ' ,) [[definition of order on strings I]

and this was done for ari,- x and F,

Q is least element

- [[]Thm. 2.53

We can now construct our string induction algebra:

Theorem 2.54: MLPp Continuous String Induction Algebra

Let <P, g > be a FD-PCPO, and let (F)i be functions in MLPpn,

Let MLPP = < (MLPPA)n E , F [(F)j] > where F [(Fi) i e I] is the least set of functionals containing:
-"'" ~* the functionaLs Fi. = X f. Fi , f , for i r I . (Or X fl..,fi . (k x. Fi(f I~~ ..f~ _) inl the general case.)

a the identity functionals,

and closed under composition with proje,.iuos, then:

MLPp is an induction algebra (cf. def. 2.15) and all fumctionals in F are continuous.

* Proof:
P Domain requirement:

We have Vn .o. MLP, is aPCPO. [thn.2.53]]

[ldisnrq.

We still have to prove that all the functionals in F are closed (i.e. really yield a function in MLPp,. for some n) and

am continuous.

Closed:

We have V i E I, F, E MLP ni [[hypothesis]]

0

23

and c -monotorucity, <-monotonicity and LP are preserved by composition

-' [[thin. 2.10. thm. 2.47 and thin. 2.46)]

V i E I. F,. is closed.

and the identities and projections are closed [[immediate]

their compositions are closed.

Continuous: (this is where we use our generalization of [Manna 74] Thm 5.1 : thm. 2.37)

We have P is a FD-PCPO [[hypothesis 1]

and MLPp,,i sub-cpo of [Pn -* P] [[thin. 2.53]]

and V i E I, Fi c-monotonic [Fi e MLPp,]]

and V i E I Fi, closed [[above]]

V i E I, Fi. continuous! [[thin. 2.37]]

and the identities and projections are continuous [[immediate]]

their compositions are continuous. E[thin. 2.11]]

[[l11-,m. 2.54

.

4",

--,

.1*

%I%"

24

".

'n

w%

-U.

A"

0 25

3. Semantics of Synchronous Circuits

-3.1. Informal view
The key to our work is to understand what a synchronous circuit is, as a mathematical object. The goal of this

section is to guide you through the evolution of thoughts which led to the final product, and informally convince you
of its appropriateness.

The final product itself is described in exacting precision in the rest of this chapter. In this first section, we have
tried to maximize simplicity, and minimize the use of mathematics... We are also assuming no prior knowledge of
hustory-functional semantics such as [Kahn 74], [Johnson 84] and [Kloos 87]. More advanced readers should bear
with me, or simply skip this informal section.

3.1.1. First basic intuition (circuit as a black box)
Consider as a start a combinational circuit, i.e. a circuit with no memory (no registers and no feedback loops).

Assume that the values which can appear on the wire are binary digits (True and False), then we can identify the
circuit with a boolean function. This is cormmonly done in all circuit design textbooks. In fact we can easily move
from binary digits to natural numbers for example, and identify more general combinational circuits with functions
on these numbers.

Abstractiag slightly, consider that the values on the wires belong to an arbitrary set: Z , we can identify a
combinational circuit with a function from Z to I.

Once we introduce memory (or state) in the forms of feedback loops, or registers, things are not so simple. For
example, consider a running sum sequential circuit (which accumulates the sum of all the inputs it has seen). It is

pictured below, with the square representing a register (initialized with 0) and the circle representing an adder.

Figure 3-1: Running Sum Circuit

x

iY

For this example, we have I the set of natural numbers. Assume the first number we present is 3, the output is
3. The next number we present is 5, the output is now 8. The next number we present is 5 again, the output is now
13. Clearly, we can no longer identify this circuit as a function on the natural numbers, since it produced a different
answer on the same input number.

The solution to this problem is to consider the sequence of all inputs, and the sequence of outputs; in our case:
3.5.5 - 3.8.13 . If we ever replay the same sequence of inputs (from the start) then we will get the same sequence

- 5i

26

of outputs.

In other words, a sequential circuit can be identified with a function from se iuences of values in 1 to sequences of
values in Y_ These sequences being finite, we refer to them as "strings", and the set of strings on Z is called: *.

Note that a combinational circuit identified with a function f: " -4 1 can be identified in this context as the
memory-less" function: f* which to the input: a.b.c assigns the output: f(a).f(b).f(c) (In comparison, the

function which corresponds to our register: Ro, assigns: O.a.b to the input string: a.b.c) .

* Therefore our conclusion at this point is that any synchronous circuit can be identified with afunction from Z* LU
Z* which we will call a string-function.

However, the string-functions associated with synchronous circuits have two additional (and fundamental)
properties:

* Length-Preserving: the length of their output string is always equal to the length of their input string.
This is immediate since we find out what our string-function is by looking at all the wires at the end of
each clock period say, and tacking these new values onto the history of previous ones for each wire.

0 o Monotonic: assume that on the input string x, the circuit returned the output string y .Now, assume that
we add one more value u to x, making it the string: xu , then the new output string will already start
with y, and the circuit will tack on a new value v to y, making the output: yv. The circuit can not "go
back in time", change some of the results it had output on input x, and produce a string which does not
start with y. This property is exactly monotonicity with respect to the prefix relation: < on strings.

So, the essence of our semantics is: a synchronous circuit can be identifed with a <-Monotonic, Length.
Preserving string-function.

Abbreviation: we temporarily define MLP- " <-Monotonic and Length-Preserving".

There are two technicalities we have ignored so far, and which we mention for completeness here:
" If the circuit has many input lines, then the corresponding string-function takes as argument a tuple of

strings, all of the same length (for the same reason which led us to the conclusion that the string-
function was length-preserving).

* If the circuit has many output lines, then each output line is identified with an MLP string-function, and

the circuit as a whole is identified with a tuple of such functions,

3.1.2. Second basic intuition (circuit as a system/network)
We now take a look at how our circuits are built. As far as we are concerned here, synchronous circuits are made

from two kinds of elements:
a Combinational elements: elements which do not have memory, or state, and which we have associated

above with f* string-functions.

* Registers/clocked storage elements: elements which hold values for one clock period (after which they
latch in the input presented to them), and which we have associated above with the R. string-function
(The parameter. a, is the initial value of the register, in the example above it was 0.)

Note that we use the word "register" in a very narrow sense, which is common in the formal hardware specification
literature [Leiserson-Saxe 83], [Johnson 84] and (Hunt 85],

Circuits are then built by connecting inputs and outputs of the above components in an almost arbitrary manner.

We say "almost" because for a synchronous circuit, every loop in the connection graph should contain at least one

say aynchonou everloopgrap

27

register. Otherwise, we get problems of asynchronous latching, oscillations, etc., i.e. not a correct synchronous
circuit: see [Mano 76] and [Mead-Conway 80] for more details. For our semantics, this restriction: "Every-Loop-is-
Clocked" [ELC] is not necessary (and we will come back to it in section 3.4), but at this point it is easier to keep
thinking in terms of such "good' circuits.

The question is. how do we give meaning (i.e. semantics) to the network, knowing what the individual elements

stand for?

If for each element in the circuit we write an equation relating the output to the input(s), then we obtain a new
view of our circuit as a system of equations. If there are loops in the circuit, then the system will be recursive.

There is a standard way in semantics to give meaning to a recursive definition, and that is to consider it as an

equation in a certain (appropriate) domain, and take a certain (appropriate) solution of this equation as the object
being defined by the recursive definition.

This is exactly what we shall do!

Our domain is basically the set strings on 1, and the MLP functions on it. Each node is already identified with a

certain MLP function (f* or Ra) . A circuit, or system of equations, will be identified with some MLP function
* which solves that system.

A technicality which we have ignored so far, is that the "appropriate" domains we have mentioned above are
ordered domains, i.e. there is a notion of an object being "less-defined-than" another. This relation will be denoted
by: c . In our case this notion of c is very simple: We add to . one element: ? , which should be read as
"unknown". In the c order, ? is c all elements of I, and that's it. The new set is called: Y,. We then simply
extend this order relation to strings (by comparing them one position at a time), and to functions on these strings

(also by comparing them point by point). One basic concept of computability in these domains is that the
computable functions respect the c order, i.e. are ; -Monotonic.

Pronunciation note: "_c-monotonic" can be read "L-monotonic" (short for "less-defined-than-monotonic"); and

5 -monotonic can be read "P-monotonic" (for "prefix-monotonic").

We also define the following (permanent) abbreviations to ease everybody's job:
Monotonic= "Z -monotonic and S -monotonic"; and

_ -MLP= "Monotonic and Length-Preserving".

So, in conclusion, a synchronous circuit will be identified with an MLP string-function, or a tuple of such

functions if there are many output lines.

3.1.3. Extensional versus Intensional view of the world
0 There is one last subtlety which comes into play in our semantics of synchronous circuits: so far we have always

said "a circuit is identified with a certain function". What we have really argued however is that "a circuit computes

A.i a certain function".

So in other words, we have associated a circuit with what it computes (a certain function). In doing so, we have
* abstracted away all information about how it computes that function. What we have done is to define an extensional

semantics of synchronous circuits.

e In order to retain more information in our theory, we actually define an intensional semantics which identifies a
'..

01
% N % ' Ia-x,

28

circuit with the functional defined by the system of equations, rather than simply its solution. We can still recover
the extensional semantics simply by taking the least fixed point of that functional, and so we end up defining both

the intensional and extensional semantics.

This concludes the vague view of things. The remaining sections of this chapter, together with the mathematical

preliminaries of chapter 2, are intended to dot all the i's.

3.2. Formal Syntax
Formally, we have one basic syntactic object: "SYnchronous System Description" or "SYSD". These are

essentially recursive systems of equations, together with a list of which defined functions are the designated output.
They correspond very closely to engineer's "net lists". We will define a set of such syntactic objects, i.e. a

language: LSD.

Note that syntactic entities will be written in this font.

Definition 3.1: LSD

o Lchr = countable alphabet with elements denoted by a, a,, a 2

e Lchar-fun = countable ranked alphabet (elements have arity) with elements denoted by f, fI, f 2

.Lsrin.f= { R a E Lorh I .' { f f e Lchar-fun } with elements denoted by F,F 1 ,F 2

, Linpitlre.var = countable alphabet with elements denoted by x, x1, x 2 ...

e Lnoninput.linc-var = countable alphabet with elements denoted by Y, Y1 , Y 2 Z, Z1, Z2

*LSD={ (in, sys, out) I
n = tuple of input-line-vars: (xi,..,xm), also denoted as x for short.

sys=systemofequations: Yi(x) -- F (..,Ej,..)) {L.fityfF ,fori e {1..n)

with F I E Ltn fun and E = some input Xk or non-input expression Yk (x)
U"out is a tuple oMnn-input-iine-vars among YJ, •,Y.

Elements of LSD am denoted by S. S2. S2 "'

As syntactic sugar, we will sometimes omit the input variables (x 1 ,.. ,Xk) or x as arguments for Yi's in the
system, sothat Y5 *-- f*(Y 3 ,Y 1 ,x 4) will be a legal equation. Note that in this sugared form, our syntax is
almost identical to the one used in [Kloos 87] in its "applicative" form. Our reason for not using the sugared form as

the primary syntax is that we can view our syntactic objects as restricted expressions in a more general string

expression language, and under that angle, we want our expressions to be well-typed.

One weakness of LsD as defined is that it is "flat". It does not allow user-defined string-functions (sub-systems).
We did this because treating such objects formally brings semantic complications which are orthogonal to the

problem at hand: semantics of synchronous concurrent systems, Informally, we treat them as follows:

e Non-recursive string-function definitions, i.e. macros, are simply expanded out.

* Recursive string-function definitions are disallowed. They correspond to non-directly implementable
specifications; they are studied in [Johnson 84]. Alternatively they define networks which reconfigure
themselves (expand and contract) during execution; see [Glasgow-MacEwen 87] for this view in the
context of operator nets.

LSD is a fine language for mathematical and computer treatment. For human interaction however, a graphical
language is more appropriate. We will therefore define a second language: LsD~rTp h I of sysd's in graphical form.

LSDGraph is isomorphic to LSD, and we will give a (trivial) translation function.

29

Definition 3.2: LSDGra h
A sysd is a multi-graph V.E), where vertices are of 2 types:

* VCombinational: represented with a circle, and a char-function letter per out-edge. They have n
in-degree, and m out-degree, with nn _> 1.

* VRegister: represented with a square, and a character letter. They have in-degree 2, and out-degree 1.
and where edges have at most 1 From-node, and at least a From-node or a To-node (and usually both). Edges
with no From-node are called "Input edges". Some non-input edges are designated as "Output edges".

At this point, an example should help:

Figure 3-2: Example: Running Sum/Avg Sysd

Sum'~ aorunning-sum

*X X c

n": Y T Yrunning-avg

Or in sugared LSoD:

Yrunning-sum 4- sum* (x,Y 2)

Y2<._. V (Yrunning-sumf Xck)
% Yrunnng-avg - div* (Yrunning-sum, Ycountor)

Ycounter - R1 (Y 1 IXck): Y1 - inc* (Ycountor)

V5'. In the future, and as commonly done in synchronous circuit design, we will often omit the 2nd input of Registers
(the clock input: xCk) from graphical or sugared sysd's.

Note: As they stand, elements of LsDp h are not "classical" mathematical graphs, since an edge here is not just a
* pair of vertices, but instead, a pair- (0 or 1 vertex,0 or 1 or many vertices). We could reduce these objects to

standard graphs simply by introducing additional ("duplicate") vertices, but there is no point in doing so, since we
only intend LSDCraph as a front-end (auxiliary) language, and not as a tool for meta-proofs.

Definition 3.3: Translation: LSLraph -
Let the input edges be: x1 , x,, and the non-input edges be: Y1 , . . , Yn. Define:
in n = tuple of input edges.

' , .Sys=
5'." * For each node in VCombinational, for each out-going edge (out-edge: Yi, char-function letter. f1), add

5'.

30

the equation: Y,. <-- f* E,, where E, are the incoming edges (either :k's or
,"Yk"sl).JI

* For each node in VRegisters (out-edge: Y_ character letter: a), add the equation: Y, '-- Ra (E,, E2)
where E, and E2 are the incoming edges.

Du: = tuple of designated output edges.

3.3. Denotational Semantics
The mathematical foundation of our denotational semantics is a String Induction Algebra. of string-functions, and

string-functionals. A sysd will be (composiuonally) mapped, by U[]] , into a string-functional, or more precisely, a
system of functionals. This is in the spirit of [Talcott 85] and [Moschovakis 83], and preserves intensional
information about the sysd - how it computes - as well as its extensional denotation - what it computes.

Since however, for many of our purposes, we are interested in the extensional denotation of the system, we also
define an extensional denotation function. g., which maps a sysd into the tuple of string-functions which it computes,
and which is the least fixed point of the system of functionals.

Construction of the String Induction Algebra:

We have a countable alphabet. I , elements of which are denoted by: a, b, c, a, b1, c1 for constants, and u, v,

__ . u1, v1 ... for variables. Now we lift the alphabet X, with least element "?": Z?, and get the corresponding C (flat)
order, and we take Strings of T,: 7.*, with the induced c order. Elements of L,* are denoted by: x, y, z, ... for
variables, and E: the empty string, as the only constant.

For reasons explained in 3.1, we are interested in functions on 1,* which are c -monotonic, _<-monotonic and
Length-Preserving, and which we can define recursively from the following functions:

Definition 3.4: Primitive string-functions

" Ra : (1?*)2 _ Z,* defined by: R,(,) = E A R(xuxk.v) = ax, for a e I. We call R, a "register"
string-function.

" f* : (Y?*) 2 _ , defined by: f*(E,..,E) = E A f*(Xl.Ul,..,XnUn) f*(xl,..,Xn) . f(ul,.Un) , for f E

[1,n . We call f* a "combinational" string-function. It is simply the homomorphic extension of
a c -monotonic function on .., to strings (of equal length).

__ Note about Registers: informally, we had treated R, as a unary function. Formally, we've defined it as a binary

function, which ignores its 2nd argument! This is only a semantic subtlety, the reason for it is clear when you

consider what happens if you fuse the output of a register with its "main" input. The results of this operation is a
perfectly meaningful synchronous circuit, which keeps outputting the same character, at every clock tick! In other

words, the 2nd argument (the clock) is not entirely ignored. It's just that all its information (its length) is also given
% by the main input, as long as it exists. Whenever the clock input remains the sole input to the circuit, then it

S-becomes semantically significant

Theorem 3.5: R. and f* are MLP
, (Recall that MLP= "c -monotonic and _ -monotonic and Length-Preserving".)

* Proof:
Immediate verification.

[.]Thm. 3.5

%%

0 31

Therefore we can now instantiate the main results of chapter 2, and get the keystone of our denotational

semantics: the string induction algebra.

Theorem 3.6: MLPL Continuous Induction Algebra
The MLP functions on Z,*, and functionals defined from Ra's and f*'s form a continuous induction algebra,
which we call: MLP1.

Proof:
We have ., is a flat CPO [[by construction]]

"*, L... 1, is a FD-CPO [[thm. 2.31]

and XL, has a least element [[by construction]
., is a FD-PCPO

The result is now an immediate instantiation of thin. 3.5 and thm. 2.54 where we have slightly abused the
terminology in exchange for simplicity...

[11]Thm. 3.6

We can now define our (intensional) denotational semantics:

Definition 3.7: Intensional Denotational Semantics: 9 D]
* Let S e LSD, S =(in, sys, out) with non-input lines Yi, i e { 1..n}, and input lines x j e { l..m):

- *LSD: S]]=(in, [sys]], out); ff sys I will be calledt s . ts = ('t1,.,xd where
= X(Y,..,Yn).[X(x). E Fi I (..,E,..)] for equation: Y1 (- F± (E.., .

... 9 .Lstrngfu f Ra I=RI. andir f*]= flf

* Lcharfun : [I f]] = some operation on X, naturally extended to L, .

*Lchar: I a] =some characterinl

Formally, our semantics is parametrized by an algebra X with some fixed set of constants and operations.

And the (derived) extensional semantics:

Definition 3.8: Extensional Denotational Semantics: g
Let S E LSDI S = (in, sys, out) and I sys I = cs = ('C1 ..,T). We define the extensional semantics of S as
the least fixed point of its intensional semantics, i.e. a tuple of string-functions, from which we keep only the
selected output lines: pl(S) = LFP(Ct,..,'n)out

To justify this definition: we have MLPZ is a continuous induction algebra (thin. 3.6) therefore (thin. 2.16), the
system (Ai)ie (I..n has a Least Fixed Point in MLP£: lub[(r 1,..,rn)J(Q,..,Q) 1i, E • (Recall that Q = X x. .?

Just to add a touch of concreteness to these definitions, we continue with the example presented in section 3.2, in

figure 3-2.

* Assuming we've selected the lines: Yrunning-sum arid Yrunning-avg' then its extensional semantics is a pair of

string-functions (where the characters are numbers):
(. xx .e' I xX1

Its intensional semantics is the system of functionals which would be described exactly like the sysd in recursive
form (except for the font).

N

0

32

3.4. Mathematical characterization of "Every-Loop-is-Clocked"
It is one of the most basic facts of synchronous circuit design that some "building rule" has to be observed: every

loop in the circuit should contain a clocked storage element, or more tersely: Every Loop is Clocked [ELC] . Our
semantics gives a meaning (assigns string-functions) to all circuits, including those with "illegal" connections.
Intuitively however, there is a distinction between "good" synchronous circuits and others.

The goal of this section is to formalize this intuition. i.e. find a mathematical property enjoyed by the "legal"
circuits, and prove that the extensional semantics of ELC sysds have that property.

In order to carry this out precisely, we need to define several simple concepts about synchronous circuits:

Definition 3.9: Predecessor
Let S beasysd. with non-input lines: Y1, i E (1..n) ,YkisapredecessorofY i <=> Yi *- Fi('"Yk"")
ie. Yk appears as one of the arguments for Y,.

Definition 3.10: Path
Let S be a sysd. A path is a sequence P = (Zl,..,ZP) such that Z's are non-input lines in S and Zj is a
predecessor of Z+I,Vj E {l..p-l}.

We denote the set of Paths of a sysd S by: Paths(s).

Definition 3.11: Loop
Let P = (Z1..Z,) E Paths(S), Loop(P) <=> ZP = Z

Definition 3.12: Register-line, Combinational-line
Let S be a sysd, with non-input lines: Yi, and equations: Yi Fi(...)iE { ..In,

* Yis a Register-line <=> F, = R., for some a.

* Y is a Combinational-line <=> Fi = f*, for some f.

Definition 3.13: Path is Clocked
LetP=(Z ...Z) E Paths(s),Clocked(P) <=> 3j e (1..p} I Z.isaRegister-line.

Note: the set of all non-clocked paths is the set of all combinational paths through the sysd. It could be totally
ordered by appropriately defined weights (delays) on combinational nodes. Its max weight element would then be
the "critical path".

Definition 3.14: Every.Loop-is-Clocked [ELCI
Let s be a sysd. ELC(S) <=> V P e Paths(S), Loop(P) => Clocked(P)

The fact which is informally known in the engineering community, but which I have never seen formally
mentioned in any form in the "theoretical" literature is then:

Theorem 3.15: ELC => Total on *
Let S be a sysd, ELC(S) => A(S) is total on l*.
And more generally: ELC(S) => LFP(,ts) is total on Z*, i.e. the results applies to all the lines of the circuit,
not just the ones selected for output.

Important note: all functions we've dealt with so far were "total" functions, but on -.,* . The additional property

of being total on Z* means that if the input is in Z* (i.e. has no ? in it) then so does the output. This is nor enjoyed in

,-1

33

general by arbitrary functions on L,*.

The proof rests on two observations about iterations of Kleene's algorithm in MLPr. "Kleene's algorithm" is
simply the constructive method used to reach the Least Fixed Point of a continuous functional in Kleene's theorem
(thn, .14), as the least upper bound of a chain built by iterating the functional starting with the least element of the

PCPO.

Informally the proof goes as follows. On any sysd, for an input E Z* (i.e. with no ? in it):
* At each Kleene iteration (applied to the input), all values (on all lines) have a particular shape: some

"real" (non-?) characters, followed by some ?'s, and each iteration "pushes" the ?'s a little further to the
right (or leaves the value unchanged).

* If the algorithm stabilizes with some line stil having ?'s in it, then we can "climb back" from that line
and extract a loop of combinational-lines (i.e. a non-clocked loop).

More precisely:

Definition 3.16: K-view
Let S = (in, sys, out) be an arbitrary Sysd, x an arbitrary input Let r= sys)-' "..'t.

Define KJ =(,t..,zn)J(Q,...,Q)(x) =(KJ,..,KJn). Figuratively, K is the "view" of the values on all the lines of S,
after the j'th iteration of Kleene's algorithm. For example, KO = (?"t', ..,.T .

The first observation is expressed in the following lemma:

Theorem 3.17: K-view shape
Let S E LSD,withnon-inputlinesY,, i E {1..n} andminput lines. Letx E (E*)- -,Vj E co,Vi E {1..n},
3 pj.i E {0..xi} I Ki = , ?T S'Oj with c,l e E T* ,i.e. informally: KJi- = c I '. . withc's *? .
Proof:
Assume [hI] x e (*. We induct onj (i.e. on Kleene iterations) with predicate:
Vie {l..n} ,3 Pji E (0.Jxl) I KJi =cIl..p ? 'Ix-Pp

Base case: immediate [[take po, =0, V i]

Induction step: (assume ok for j). Let i arbitrary E {..n)

* If Y, is a register-lne: Yi -- Ra(Yk) , then:
We have Kj+ 1 = a. KkIL,..XI-1 [[def. Kleene's algorithm]]

KJ I =a. c~l~ . ?T 'X1'Pk [[induction hyp., instantiating general i to k]]I I..J.k *
i.e. we have added a non-? character an the left, and chopped off a ? (if any) from the right.

KJ1 is "of the right shape" A Pj.,i= if Pj.k =111then lxl elseI+pj~ k

If Y 4- R.(Xk) , then:

- ."We have KJ '1 =a.j. ..xt~ [[def. Kleene's algorithm]]

there areno ? inK . [[.k X* byhl, a ?by definition, 3.7]]
KY 1, is "of the right shape" A Pj+z,i=Ixi

If Y is a combinational-line: Y <-- f*(",Yk orxk,..),then:

We have ..,KJk,.. are "of the right shape" [[induction byp.]]
and all xk's have no ? in them [[hypothesis hl]

-.3 4

and KJ+I, =f* (...KJkorxk,..) [[def. Kleene's algorithm]]
and f is a naturally extended function :*)- -- . [[by definition. 3.7]]

Consider any position: pos E IL..Ixl}

We have KJ+1 .. s =fl (..KJk, .orpo,... [[def. f*, 3.4]]
and Xk'pos * 2 therefore:

if for all predecessors, Kkpos t ? then KJ IPs # ?

if for some predecessor, K)k,,po s = ? then KJ 1 IPs = ?

Kj+' , is "of the right shape" A pj., = min{ Pjk Yk predecessors of Y, or Ixi if all the arguments are
input-lines.

[[]]induction step

[[]]T n. 3.7

The second observation becomes the proof (by contradiction) of the ELC theorem:
Proof:
Let S E LSD, with non-input lines Yi, i E (.nI and m input lines.
Assume :
[hl] x E 'I*p
[h2]Ej 3 E I KJ 1 =K', i.e. the algorithm is stable at the j'th iteration.
[3]3io r= {l..n(I pj,i < IxIli.e. thereis still atleastone ?inKJk.

We now extract a predecessor of Y which also has some ? left in it:

if Y is a register-line, then its argument can not be an input line because inputs are assumed to have no ? in them

and hence K,io would have no ? in it, V j > 0.

. Y -- Rs(Y)
We have pj.i. = if pj,, = IxI then Ixi else l+Pi [[proof of Shape lemma]]

and [[hypothesis h2]]
and pj. < Ixi [[hypothesis h3]]

p .ij < IxI mainly, and also: pj~i, > Pj-i

if Y is a combinational-line: Y +- f * (",Yk or x,..) . Again, because inputs have no in them and Ki-lo
f*..Yr....ganbeasenuthveo

contains some ? , at least some arguments must be non-input lines.
' .. ., = min Pjk ' Yk predecessors of Y } [[proof of Shape lemma]]

* Let i1 be some predecessor yielding the minimum p,
then 13]i, = P4,o

and p+t., =P, [[hypothesis h2 I
and pj* < Ixi [[hypothesis h3]]

... p ,, < xt mainly, and also: P[j,i = Pj.i o

e By this pro..ess we've extracted a predecessor of Y : Yi such that pj,i < Ixi , which was the hypothesis we had
on i. therefore we can reiterate this process.

"b.

.-- Remark: From the construction above we also get:

S[rI] in either case. p, pji

[r2] p,., = pj. <=> Y is a combinational-line.

5 We now build a path by starting with P = (Y 1), and:

iA 'r

0rr~z

35

eIf Y does not already appear in P, we add it to P, and reiterate. Since there are finitely many lines in S,

we must eventually hit the other case:

* If Y, does appear in P, we add it to P and stop: we have now obtained a path which contains a loop!

More precisely, at the end of this (finite) process we have: P = (Y, 0Y ...,Y ,Y1 ... ,Y q) for some q. Extract the

loop L = (Y, "Y .""Y).

From [rl] we know that the p's are weakly increasing along L. And they must be equal at both ends (because L is
a loop), therefore they are constant along L. From [r2], the p's can only be constant if the lines are combinational-

lines.

L is a loop of combinational-lines in the sysd S

Therefore, the contrapositive is that if S has no combinational loops, i.e. ELC(S), and if the input x has no ? in it,

and if Kleene's algorithm terminates at the j'th iteration then:

V i e (I _n) pj,i = lxl, i.e. KJi E Y"*

and K) = LFP('rs)(x) [by def. of K-view, and Kleene's thm.]
.'. LFP(,cs)(X) E Z*r

[[]]in. 3.15

3.5. Operational semantics and Equivalence with (extensional) Denotational
semantics

An operational semantics is a different way to assign meaning to a circuit with a more "dynamic" or algorithmic
flavor than the denotational semantics. It usually refers to concepts such as state and transition steps, and iterativel

computes the outputs from the inputs and the circuit This is in contrast to the (extensional) denotational semantics
which are considered more "static", just stating what the outputs should be (least fixed points of a system of

equations) without explicitely constructing them. This however, is only a question of taste since Kleene's theorem

for reaching the LFP is constructive and easily implementable.

Proving the equivalence of an operational semantics/algorithm and the (extensional) denotational semantics can

be seen under two angles:

* as an additional justification for the denotational semantics, if the operational semantics is "intuitively
right",

e or as a proof of correctness of the algorithm, if one believes first in the denotational aspec, of the
computation.

In this work, our goal is the first angle. We therefore have to pick an operational semantics which is as

"intuitively right" as possible to people who would be skeptical of our denotational semantics. To that end, we will

give two operational semantics, both based on states, and character by character operation, but with a slight

distinction:

• The 1st one uses a "big" state: the history of all values seen on all lines, and is therefore a little
"abstract". We will refer to it as our "operational semantics".

* The 2nd one uses a more practical state: the current value held in all registers, and is essentially the
simplest simulation algorithm for synchronous circuitu, [RusseU-Kinniment-Chester-McLauchlan 85),
and hence, quite "concrete". We will refer to it as our "simulation semantics".

And we will prove equivalence with the (extensional) denotational semantics for both of them.

Definition 3.18: Informal Operational Semantics
For a given ELC circut S with non-input lines Y,, i E { l..n), and input lines x1,j E 'I..m}, we define the

6/

"- - . •.'. . ,,, ". . ', ' ,.. 'i4. . , , . , ., . , .. , ,, .. r. .. W .,,W
- w w .. r ." ' q" ," ," " " € i le . / -4". . J .% -%- p . .'i" .

0. 36

state s = (Sy.S,) to be the history of all characters seen on each line.

We define a "next-output" function 8 s which takes the state (SyS x) and an input character (for each input line)
and returns an output character (for each non-input line) as follows:

"" * Case: Register-line Y (-- Ra(Yk) : Return the LAST character which appeared on Yk so far, because
A that's the character which is currently being held in the register. We can get that character from the

state: sl. If there was none. i.e. we are in the initial condition, then return "a".

If the argument is an input line, lookup the value in s,. instead of sy.

SCase Combinational-line Y -- f*(..,Yk. '): Recursively compute the next-output for the predecessor
, lines and apply f to them.

If some argument is an input line, then take the current input character for that line.

We also define a "next-state" functionys which simply tacks on the new character produced by 8. to the
current state. (And for the input part of the state, tacks on the new input values.)

Then we extend both of these functions to handle strings of inputs by iterating the character by character
funcuons, while starting in the initial, empty, state. This yields the "complete-output" function As and the
"final-state" function F .

___ Pictorially. the set-up looks like this:

0 Figure 3-3: Operational Semantics

\-.Y

)"'"

.;S • • ,s= S y, Sx

S X

0~ char.); :

m"" *." char.

- " .Notes:

* The function 5s is recursive in an unusual way in the combinational case: it calls itself on all the
predecessors of the current line. But since we assume that all loops are clocked (ELC circuit) then these
recursive calls will eventually hit a Register-line or an input-line and terminate. We will justify this

- '•formally below.

*The 2nd input to "R." equations was not mentioned because the operational semantics ignores it. (The
clock beat is in some sense hardwired in the string recursion.) More precisely, the equivalence theorem
is true no matter what line is plugged into the 2nd argument of Registers. However the operational

0

37

model matches the reality of physical registers only if Xck is indeed connected to their clock pin (and if
other physical considerations such as timing. electrical issues, etc... are also correct).

To lighten up our notations the S subscript will be omitted from here on. Also, we will make use of an
'. "or respectively" notation, to express definitions which are very similar in two symmetric cases

, .. (argument is a non-input-line, or input-line). This will be clear with the examples below.

Definition 3.19: Formal Operational Semantics
Let S E LSD, with non-input lines Y1, i E { 1..n} and input lines xj, j E 1..m), and ELC(S).

Let sy E . E (Y,*)! , x E (x*)m, u E (V,,)!,v E

Define 8(sy,sx.V) E (Z,)n by: for i E f l..n},

o if Y, -- Ra(Yk or x) then 8(sy,S,v), = if Sy or = then a else last(Syk or sx)

" if Y --- f*(-.Yk or xk..) then 8(Sy,SV= f(..,8(sysxv)k or yk,.)

Define -(Sy5,v = k sy.8(Sy.sX,v) , Sx.V

And the string-extended functions are defined by recursion on the input string:

A(E) = c and A(xu) = A(x). 8((x),u)
S

F(-) = E, and r(x.u) = y (F(x).u)

It should be obvious from the state set-up (or the defining equations) that the "complete output" and the "final
state" are essentially the same, and that therefore the defining equation for A can be simplified, by replacing F by A.

More precisely:

Theorem 3.20: A simplification
V x in (T.,*)M , u E (,)M , r(x) = (A(_),X) and therefore A(x.!_) = A(x) . (A(x),x,u)

The first equality is proved by a simple structural induction on x; the second is then a trivial substitution into the

definition of A.
Proof:

Case :
We have A(E) = [[def. 3.19]]
and r(e)=_._ [[def. 3.19]]

* [fUi

Case x.u:
We have F(x.uj=y((F(x),u) [[def. 3.19, expanding F]]
and F() = (A(.x) [[induction hypothesis]

• • Fi~~x.q) =v((x ._
S' F(x.,) = (A(x).(A(x),xu), x._) [[def. 3.19, expanding y]]

F(x.u) = (A(x).(F(x_).u), x.u) [[simplifying A(x),x w/ induction hyp.]]
and A(x.u) = A(x).8(F(x),u) [[def. 3.19, expanding A)]

r(x.u) = (A(x._), x.u)

11-i.u. 3.20

*1:' .

A 38

Remark: Totality of the functions 8, 'y, A, r
* A,. F and y are primitive recursive in 8: i.e. assuming 8 is total, their totality is simply a struciaral

induction on x (i.e. well-founded induction on the - (prefix) relation in 7*.

* 8 is more unusual: it recurses on its "Line" argument (noted as a subscript) in the Combinational line
case. I.e. it calls itself back on the predecessor lines of the current combinational line.
This corresponds to well-founded induction on the predecessor ordering of the circuit "cut" at each
Regzis'cr. i.e. where all Register-lines are considered as sources together with the input lines. Clearly if
the cL-uit is ELC, then all loops have at least a Register-line, and when these loops are "cut" at the
Register, the resulting directed graph is acyclic, and hence the "R-cut-predecessor" relation is well-
founded.
Therefore the proof of totality for & is simply a well-founded induction with the R-cut-predecessor
relation on its line argument.

The main mason for all this set-up is of course:

Theorem 3.21: Operational-Denotational Equivalence
LetS= (in, sys, out) be an ELC sysd (with m inputs), we have: Vx a (Z*)-_-,As(x).= tS)x)

Or in other words: for all "true" synchronous circuits and inputs, the operational and denotational semantics
* agree.

The key idea of the proof is that the "complete-output" function A is a fixed point of r, (the functional system
denoted by S) , and also of course that it is in the right domain: MLPy. The inequality ji(..) cz A(..) is then an
immediate consequence of the fact that any fixed point is at least as defined as the least fixed point. The
ELC-characterization of the previous section gives us that for an ELC circuit and input with no ? in it. the

denotational semantics returns strings with no ? in them, i.e. maximal strings under c , and this yields the equality.

Proof:
'r Let S be an ELC sysd with lines Yi, i e (1..n) and input lines xj, j c (1..m }.

We want to prove: MLP(A) A t s (A) = A, which is equivalent to the coiijunction of:

[_-Mon]: V xx' r (1,*)E-, x _< x' => A(x) S A x)

[c-Mon]:V x~x' E (E?*)mx c x' => A(x) C A(x')

[Fixed-Point]: V x E (Z,*)--, V i E { l..n} , [ti(A)] (x) A(.)i, where the left-band-side is simply the expansion

* of the Yi definition, substituting: A(x)k for. Yk(x).

[LP] is clear from the definition of A, since for empty input we return the empty string, and for each additional

input character, we concatenate one extra character. Formally, [LP] is a trivial (and hence skipped) structural

.14 %4#induction on x.
• [[]] P

- [5 -Mon] is similarly easy, since to compute A(_xu) we take A(x) and append "something" (a character). Therefore

A(3) !5 ,i(ju). And since x < x' <=> 3 I x'=x. z,a trivial structural induction on z yields [<-Mon] as

originally stated.
Si S-M...

For [C -Mon] we first prove that 8 is c -Monotonic (in its string arguments), which requires a well-founded

induction on the R-cut-predecessor relation on the line argument, corresponding to 8's recursive definition. Once

this is done we can prove that A is g -Monotonic by a simple structural induction on x

0m

39

8 Ls c -Monotonic:
Let y,' E (1,*)2, x.x' E v.v' E (1.!i.
Assume vg A y^x Cx' A v Cv'.

Let i - {1..n} arbitrary,

If Y, is a register-line: Y, (-- Ra(Yk) then:
We have 8(y.xv) = if k = E then a else last(Vk) [[def. 8. 3.19]]

and 8y',x',v'). = ify'k = c then a else lastlYk) [[def. 8, 3.19]]
and E <=> y'k = [[y cy'hyp. and def. c ,2.38]]
and a g a [def. c , 2.38]]
and last(y.) g last(y'k) [[y c y' hyp. and last() g -Monotonic]]
• " . 8 Q . 1_x -) i Cz 8(Z .'. ') i

If Yi is a register-line: Yi +- Ra(Xk) then:

exactly the same reasoning as above with x instead of y yields:

.' .I_,)i C_ e' _, 'i

If Yi is a combinational-line: Y +- f*("'Yk or Xk,..) then:
We have &Y,x,v)i = f(..,".,vx_)k ory_k,..) [[def. 8, 3.19]]
and 8k',x',v')- = f(..,8(.X'._',v'\ orVk,..) [[Idef. 8, 3.19]]
and 8(y,_xv y 8 (.x'_'_)k [[induction hyp.: k <R-cut-predecessor i]]

and yk _ vk y g y'hyp.]]
and f z -Monotonic [[def. of the meaning of a Sysd, 3.7]]

_ or vk") C f(.., 8 (y .x, v)k or _ k"')

[10] C -Monot.mic

Now we prove [c -Mon] by structural induction on x:

Case e: Let x' arbitrary I x',
We have E Q x' => E=x [[def. g ,2.38]]
and _F=x' => A(c)=A(x) => A(f ; AQ)

Case (x.u): Let x'.u' arbitrary I x.u g .u',
note: x.u (Zy => ix.ui= ly => x',u I=X.U A XCX A U U

[[def. c, 2.38]]]]

We have A(f) = A(_). 8(A(),,,) [[simplified A, thin. 3.20]]
and A(x'.u') = A(x'). 8(A(x'),_',u') [[simplified A, thm. 3.20]]
and A() g A(x') [[induction hypothesis, x C_ x']]
.'. 8(A() ._) g 8(A. '),_',U) [[8 ;-Monotonic, x x', ui _ u']]

.-. ~x.u)g A(x'.u'

[[]]) Q-M 4.U
[[]] Q -Mon

We finally prove the main result: [Fixed-Point] , by structmral induction on x, combined with much equation
pushing...

0i

40

Case (E): let i E { ..n} arbitrary,

We have A E) E H def. A, 3.19]]
and f(e =e Ra(E)= [[def. f*, R, 3.4]]

-,,(A) (F) = FA(F)
V. • [[]]Ftxd-Potnt.C

Case (x.u: let i E 1..n) arbitrary,

We have Axu), = A(x), (A(x)xu) [[simplified A. thin. 3.20 1]

If Y is a register-line: Y, <- Ra(Yk or xk) then:

We have 6(A(x).x.u) i = [if A(x)k or Xk = E then a else last(A(x)k or xk)]

[[def. & 3.19]]

L I: A(x.u), = A(x). . [if A(x)k or =E then a else last(A(x)k or xk)]

and A(x), = [ci(A)] (x) [[induction hypothesis]]

A(x), = Ra(A(X)k or) [expanding def. T:]]

A(x) = [if A(x) k or I = e then F else a. abl(A(x) or)] [[expanding R,]]

A(x.u) i = [if A(x)k or 4 = E then E . a else a. abl(A(xk or k) . last(A(!_)k or -k)

- replacing A(x) in line Li]]

7.J A(x.u), = [if A(X)k = E then a else a. (A(x)k or .)] [simplifying abl0.1asto]]

L2: A a. (A(x_)k or) [simplifying if expression]]

We have [tci(A)] (x.u) = Ra(A(X*U)k or X.tk) [[expanding def. ci]]

-. [(A) I (x.u) = Ra[A(x)k. &(A(x),x,u)k or k._k] expanding A(_.u) , thin. 3.20]]

[i(A)] (x.u) = a . (A(x)k or H) expanding R., 6(..) and !! are characters.]]

[ti(A) (-..u) = A(.)i [[matching with line L2]

If Y is a combinational-line: Y, <-- f*(..,Yk or xk,..)then

We have &(A(x).x,u), = f (..Jast(A(x.k o _) [[def. 8, 3.19]]
..L3: A(_x.U), = A(X) i. f (.. aSt(A(x'u) k or Ek..4),..)

and A(x)i = [i(A)] (x) [induction hypothesis]]

.. A(i = f*(..,A(x)k or ...) [[expanding def. -i]]

A(x.u)1 f*(...A(L or I,..). f (.. ast(A(_xu or k. [[combining with line L3)]

A(x.u)i f*(..A(x)k last(A(x_k) or xk.last(k.uk),..) [[def. f*]]

LA: A(LXu). = fi(.,A(X)k.last(A(E.!!)k) or j.4'-.") [[simplifying _.last(..)]]

and A(x.u)k A()k . S(A(x)',u) [[thin. 3.20]]

A(x.u)k = A). last(A(x.!u\) [[S(...) is a character!]]

. A(x.u)i f*(..,A(x.uA or .!,..) [[substituting into LA]]

and [t(A) j (x.u) = f*(..,A(x.u)k or k'qk"-) [[expanding def. ti]]

[T I(A)] (x.u) = A(X._ i

[[]]Fixcc-Poinx.u.Combinational

[[]]Fixed-Pointxx

%* [f]]Fixeci-Point

From all this we know that A is a fixed point of ts and A e MLPz,

.LFP(t)UA [[LFPis Least!, def. 2.13]]

V x E (1 , LFP(ts)(x) A(x) [[def. pointwise order, 2.23])

0

41

From the previous section (section 3.4) and ELC(S) hypothesis:
We have LFP(-cs) total on Y* [ELC thi., 3.15
... v x E (!*)m , LFP(-,s)(x) G (1*,)n

and strings with no ? in them are maximal under [[def. c coordinatewise]]

V x E (Z*)M, LFP(s)(x) is maximal under c

Combining those 2 results, we get:
,. V X E (Z)M, LFP(-cs)(x) = A(x)

and of course the equality still holds if we project some lines (out) from the tuple:

and g(s) = LFP(rs)0 ut [[def. 3.8]]
V. x e (Z,*! A(So, = R(s)(X).

' 3.21

We now move on to our simulation semantics. We will define it both informally and formally, and then prove its

equivalence with the operational semantics (and therefore also to the extensional denotational semantics).

Definition 3.22: Informal Simulation Semantics
The main difference with the operational semantics is that now the state simply contains the current value
stored in each register. We call it SR and it is indexed by the (Register) line number.

The new "next-output" function 8's differs from the old one in the Register case only and simply returns the
character in s. for Register-line Yi.

The new "next-state" function y'_ updates sR by storing in it the character just output by 8's for its predecessor
line (or the input character if the argument is an input-line).

The extensions of these functions to handle strings of inputs are done just as in the previous case, by iterating
the character by character functions. One detail is different however: the initial state is taken from S, i.e. if S
contains the equation Yi *- Ra(Yk) then the initial state has S = a.

Pictonally, the set-up looks like this:

.

.

0i

0

Figure 3-4: Simulauon Semantics

SR * 6'(s,u) s=sR

n

aU

/ 1 -

• S

. lj "unused"
m

-. . As before. the S subscript will be omitted Note also that we define sR to be an array of length n, indexed by the

line number i, when in fact we only use array slots corresponding to Register-lines. This is just for ease of notation.

The other entries can be thought of as "unspecified" or containing an "unused" character, and are irrelevant to the

proof.

Definition 3.23: Formal Simulation Semantics
LetS C LSD,withnon-inputlinesYi, i r (1..n} and input lines xj, j e IL.m),andELC(S).

Let SR E (.)R. , V (1?)M .

Define 6 '(SR.y) E (I)! I Vi E I1..n

if Yi R.(Yk or xk) then 8'sR,) i = SR.

" if Yi + " f*(."Yk or xk,..) then 8 '(&R,y)i = f(..,6 (sR,v)k or y,,..)
~~~Define y'(St,V) {Vi E { Ln}

* if Y1 +- R.(Yk or x.) then y '(sR,)i = 8'(sR.v )k or .

And the string-extended functions are defined by recursion on the input string:

S() = t and A'(x.u) = A'(x). 8'(rx'().u

rF-)i = SRiial = if Yi +- R,(Yk or xk) then a and r '(x.) -y '(r "(),)

The justification for the totality of these functions is the same as for the operational semantics. The key result is:

O Theorem 3.24: Simulation-Operational Equivalence
4?., Let S be an ELC sysd (with m inputs), we have: V x e (:? - Ks() = As)

Or in other words: the two operational semantics agree.

@



0 43

The proof proceeds in two steps:
1. A "small state is appropriate" lemma, which makes explicit the fact that the value currently kept in the

register is the same as the last character seen on the predecessor line, and which is proved by structural
induction on the input string.

2. An inductive proof of equality between A and A'. The main subtlety here is to find an induction which
proceeds in the same manner as A or A' recurses, i.e. a combination of structural recursion on the input,
and R-cut-predecessor recursion on the lines. To achieve that we define < lex : the lexicographic
combination of the prefix ordering on strings, and the R-cut-predecessor ordering on the lines of an
ELC circuit, and use well-founded induction on< e,

Once these steps have been identified, what remains is tedious equation pushing...

[State-L.emma]: V x E (* ,V i E {..n} , if Yi <-- Ra(Yk or Xk) then
' A.

P '(x) I = if (A'(x)k or = then a else last(A'(_)k or -k)

This is proved by a simple structural induction on x:

CaseE :

Let i E {L..n) I ifY i <- R,(Yk orX)

then '( )i = a [[def. r', 3.23]]

and A'(E)-- [[ def. A', 3.23 ]
.. '(E)i = if E = E then a else...

r,,S -am,

Case x.u:

Let i E {1..n} I if Yi <-- R,(Yk or xk)

then P "(x.u1) = y (P "(x),u) [[ def. 3.23, expanding r" ],

.. LI: r '(x.!i = S'(E '(x),u)k or uk [[ def. 3.23, expanding y']]
and A'(X.u)-k = A'(_.)k.8'( '(),. [[def. 3.23, expanding A']]

. ast(A'(x._u,) = 8'('( ), , A A'( .u)k E

. '(x.u) i = last(A'(x.u)k) ork [[replacing in LI]]

and !k = last(xk'!k) A j.!!k # C

.. P '(x.u) i = last(A'.u)k or &.-qk)

r '(x.u)j = if (A'(x.u)!k or - '-!k) = c then ... else last(A'(.u)k or Xk.k)

We now prove the final equivalence: V x E (ZY,)M, V i E { 1..n} , A'(x) i = A(_) i , by well-founded induction on

Case (_,i):

0 We have A(E) i = = A'(_) i  [[def. A, 3.19 and def. A', 3.23]]

Case (x.ui):
We have A(x.u) i = A(5)1.8(A(_),x,u) i  [[expanding A, thin. 3.20]1
and A'(x.u) i = A'(x)i.8'(r (Y_) [[def. A', 3.23 ]]
and A(x) i = A'(x) i  [[ (1j) < -x (x.u,i), induction hyp.]

only 6(A(),x,u)j = 8'(P '(y), i remains to be proved.

'Y ; ."1 " " " " " .. "' ..



44

if Y <-- R(Yk or xk)then

We have &ZAtx .x.u) =if(AWx\ or xk) =E then a else last(A(-X)k or)

[[ def. 5, 3.19 1

and 8Y(F'(x).u, = f'(x), = if (AN'(x)k or xk) = e then a else Wat(-A'(X-)k or~k
[def. 5', 3.23 and State-Lemma I

and A(X), = [[-X)k(xk) <,,, (x.uk), induction byp. I

If Y, *- f(..,YkOr xk..) then

We have 6(A(X).Xu), = f(...8(A(X).X'U)k or uk...) [def. 8. 3.19 1
and 5'(f '(x).u) =f..8( '(x).U)k Or [def. 6', 3.23 I

and k = A'(-X'U)k [[xuk lx(.,,induction byp. I

and A(X-U)k = A(-X)k.S(A(X-)'.u)k (expandfing A, thin. 3.20 ]

and A'(X-'uk = A'(k '(r '(x)')k [def. A', 3.23 1

N.. 5(2x)._X'U)k = 8'(E '(x)*u)

V . f(...S(A(x).x.u)k or!1k,..) = f(..,8'(f '(x).u\ or! ,.

8(A(x).x.u) = 8'(r '(x).u)i

[]x.u, Combmnational

Ii~m3.24



F -_

- 45
%d

4. Theoretical Applications of the Semantics

4.1. The MLP-calculus
In this section we develop the theory of MLP string-functions, in order to provide some basic tools for the

theoretical and practical manipulations of sysd's. The following list of theorems only includes those which we have

*" found useful in our current investigations of mechanical SYSD equivalence proofs. It is only intended as the

beginning of a calculus.

Theorem 4.1: Composition of f* 's
Let fg be character-functions, (f. g)* = f*. g*.

Proof:

Immediate

[[1hm. 4.1

The following property is an essential characteristic of combinational functions (which will often be used in

0', mechanical proofs of equivalence of sysd's):

* Theorem 4.2: Combinational-Concatenation Commutativity [CCC]
',Let f* : (_)- Z,* ,VX, Y E (1;.*)!,f* (I. ) f* (xI f* ( Y

Proof:
. "f* was defined as the homomorphic extension of a character-function f to strings (of same length), therefore this

.O property is immediate.

1,]Thm. 4.2

We now define the "extended register" function: R z  Intuitively, R. outputs z first, and then x, up to a total

number of characters equal to the number of characters in the input. The else clause consists of the (uninteresting)

case where the input is of smaller length than z.

Definition 4.3: R t

Let z ,~ 1A E *, define Rz: 1:* -+ T.?* by: Rz(xal..n) = ifn > k then z, ,..kxL.Lk elsez1 L..n

It is immediate that R. is MLP.

* Note that we are abusing the notation slightly in the case where z=a, since the extended R, is unary, and the

a. original R, is binary. The confusion is harmless, since the binary R. ignores its second input (Xck), so all algebraic
properties of one will carry to the other. In the rest of this section, we intend the unary R,.

Theorem 4.4: Composition of R Z 's

V 'Z.Z' E R,* ,R Z, .R Z = R  .

Proof:

Let z=zI , z' .Xz XE ,arbitrary, x x1,L.

The proof has 3 cases: n > i+j, n < i, i < n < i+j. The most general one is n > i+j (i.e. steady state) and it is the

only one we show (the others are simpler):

We have Rz,z(x,,n ) = z' ,..zl.iX1,l..ij [[1n > i+j 1]

and R.(x, I...) = z.[[ n > i+j => n > i]

Let x' = Rz(x ,L.)

0



'

46

We have Ix'I n x' x'd,
and Vk E U.nl .xIk=if 1 5 k 5 i then z k else x,_ ,
and R[,(X') = z L., [n > i+j => n > j
and x'..z,. 1x.n =zv [[n > i+j => n-j >i]]

'. Rz4(Rz(x)) = z" L.jz,' l..ixA X-..n-,-i RZ'ZWx

E[]]Tl 4.4

The next property is the essence of the "is-a-pipeline-of' relation which we will define later, in section 4.2.

Theorem 4.5: R, pipeline
V z.z'.x E E,* . if Iz = IzI then Rz(xZ ) =zx

Proof:
Immediate verification.

a[]]Thm . 4.5

S." Finally, this next property is an essential characteistic of MLP functions in general (which will be key in
mechanical proofs of equivalence of sysd's):

Theorem 4.6: Register-MLP
Let F: (?*)-n -4 ,*, MIP string-function, a E Y,,Vx V (XE , U E (E
R(F(x.u))=a.F(x)

The proof relies on the following lemma, which is interesting in its own right:

Theorem 4.7: 1st-order characterization of MLP string-functions
Let F be a (unary) function: L* --+ .*, F is MLP <=> F(c) =E A Vx E?*, V u E , , 3v v L,, 1
F(x.u) = F(x).v

Proof:

Assume F: Y-* - *, MLP string-function.
We have IF(E)I = I[[ F is length-preserving]]

IF(E)I = 0 [[property of length]]
.. F(-)=e [[ property of length]]

Assume x E ,* ,ue ..,
We have F(x) : F(x.u) [[F is monotonic]]
.'. 3 y e E* I F(xLu) = F(x).y [[thin. 2.43, 2nd def. of prefix]]
.. IF(x).y = IF(x.u)l = Ix.u [[F is length-preserving ]]

IF(x)l + lyl =Ix + 1 [[properties of length]]
and IF(x)l = lxl [[F is length-preserving]]

lyl=lI

* [[]1].

Assume F: ,,*- Y*I [hl]F()=C A [h2] Vx e L?*, V u e ,,3v -? , F(x.u)=F(x).v

0



47

Let xv , I x <.v

then 3ze 1* I Y=x.z [[thm. 2.43, 2nd def. of prefix ]
We prove by induction on z that V z e ,*' F(x) F(x.z)•

. - Base case: z = c,
then x = xz [[x.e = x, V x E ,*]]

F(x) = F(x.z) [[F function!]]
F(x) 5 F(x.z) [[ 5 reflexive]]

- Induction step: assume that F(x) < F(x.z), consider x.(z.u) for some u E Y, :

We have x.(z.u) = (x.z).u [[ definition of concatenation]]

[cl] F[(x.z).u] = F(x.z).v for some v e Z, [[h2]]
and F(x) 5 F(x.z) [[induction hypothesis]]

and F(x.z) < F(x.z).v [[definition of < ]]
F(x) !5 F(x.z).v [[transitivity of - ]]

N'i .. F(x) _ F[x.(z.u)] [[cl]]

[[]]F monotonic

* We now prove by induction on x that V x e L,* , IF(x)l 1 lx1 , i.e. F is length-preserving.

- Base case: x = .
We have F(e-) = E [[ hi 11

IF(c)l = Id

- Induction step:

Assume IF(x)i = xi, u r ,
We have F(x.u) = F(x).v for some v e 7, [[ h2]

IF(xu)l = IF(x).vi = IF(x)l + Ivi = IF(x)i + I [[properties of length ]]
.A and IF(x)l = lx1 [[induction hypothesis]]

IF(x.u) = Ix1 + I = 1x.ul [[properties of length]]

[FLengtih-PrearvingII <
[[I'm. 4.7

* It is clear that the => part of this lemma generalizes immediately to string-functions of any arity. (For the

other direction, there is a technicality in that we have to consider the restriction of F to (7,*9 .) Therefore, the proof

of the Register-M]L theorem is now extremely simple:

Let a ,, F MLP string-function, x E (.?*)!,u E (T.,)2

* We have 3v e ., I F(x.u=F(x).v [[thm. 4.7, => part]]

' .. R,(F( x.u))=R.(F( x).v) = a.F(x) [[definition of R. I]

[[IThm. 4.6

This completes our current algebraic development of the theory of MLPZ.



48

4.2. Relations on Synchronous Circuits
A key concept m the transformational approach to design is (from [Talcott 86], and in published form in [Mason

Operations on programs need meanings to transform and meanings to preserve.

where we replace "program" by "synchronous system" for our purposes. The study of relations on sysd's is the

study of the various meanings we want to transform or preserve.

The followmg preliminary investigations are just intended to give a taste of the possibilities...

Definition 4.8: Equivalence Relations on LSD
%,. We can define 4 equivalence relations on sysd's, which are progressively coarser- Let S1, S 2 E LSD,

S. =S2 <=> S, and S 2 are syntacticly identical. (Not very interesting.)

OS -S 2  <=> S: and S2 are isomorphic (i.e. equal up to renaming of syntactic pieces).

OS. =S 2  <=> [ SI ] = [I S2 ]] (Intensional equivalence: they denote the same functional.)

OS, S2  <=> 4(S= WS 2 ). (Extensional equivalence: they compute the same functions.)

Note: technically, for = , we are comparing tuples (of functions), and we compare coordinate-wise.

More generally, = is a particular case of the fact that for any relation on MLP,. string-functions, we can define

the corresponding extensional relation on LSD as follows:

Definition 4.9: Induced Extensional Relation from MLP, to LSD
Let o be a (n-ary) relation on functions of MLPE. Define 0 on LSD with:

V S:,.Sn E LSD, (Si,..,Sn) <=> 0(9(S),.,L(Sn)).

Again, we extend 0-comparison to tuples by comparing them coordinate-wise (and answering True if all
comparisons are True).

One such relation which is very relevant to current digital circuit design, is the notion of a string-function being a

pipeline" of another:

Definition 4.10: Pipeline relation on string-functions
Let F, G be two string-functions: T.* - * ,

" F a ' G (read "F is-a-pipeline-of G with garbage z and purge z' ") with z,z' E F-* <=> 17 = Izi

,A V X E L,*, F(xz') = zG(x)

" F a G (read "F is-a-pipeline-of G") <=> 3 zz' E Y* I F a ,.Z' G

This definition is extended in the obvious way to string-functions of same arity (> 1).

Intuitively, z is the garbage output during pipeline fill-up, and z' is the (irrelevant) string fed in during pipeline

purging.

Pictorially:



S,49

,, -'SFigure 4-1: F is-a-pipeline-of G

S.. x z X

- F: G:

z G(x) G(x)

Theorem 4.11: t partial pre-order
(x is a partial pre-order on strng-functions (i.e. reflexive and transitive) and is not antisymmetnc.

Proof:

reflexivity: immediate (take z and z' to be c).

tranisitivity:
Assume F c z.GandGcyy H

Let x arbitrary in .,*.

We have G(xy') = yH(x) [[G a H, instantiating x to xf

and F(xy'z') = zG(xy') [[F a H, instantiating x to xy']]

F(xy'z') = zyH(x) for arbitrary x

FczH
.'-a.... t ''.-

aL is not antisymmetric. even when restricted to MLP string-functions:

Counter-example:

Let
, F(x) :001... I IF(x)l = Ix

* G(x) = 1010... I IG(x)l = IxI
,' then Fa 0., G A G abF,foranya~be E

* and yet F * G

[[]]Th1 . 4.11
A-

Note: this counter-example brings up the fact that the purge string mentioned in the definition of cc is absolutely
Sirrelevant. In fact, if there exists one such purge string, then any other string of the same length will do. This brings

* up an alternative definition of a which may be also be useful:

Definition 4.12: Alternate pipeline
Let F, G be two string-functions of arity 1. F a G (read "F is-a-pipeline-of G with latency n") <=>
3 zz E ,,* I 1ZJmz'ln A VX E E.,*,F(xz')=zG(x)

."

I



050

-.. 4.3. Relations between Synchronous Circuits and (Mealy) Sequential
Machines

The key idea here is that sequential machines [Booth 67], [Hopcroft-Ullman 79] can be given string-functional
semantics (v ver naturally. Once this is done, then we can use our string-functional semantics for SYSD's (4) to

,r, compare formally both objects, as shown pictorially below. We base our definitions on Mealy machines. Since
Moore machines are trivially reducible to Meal), machines (without state explosion) this does not reduce the
generality.

Figure 4-2: Formal Comparison of Sequential Machines and Synchronous Circuits

MLP

0V

"equivalent" ?

Synchronous Circuits Mealy Machines

Note: the fact that sequential machines have associated string-functions is not new in any way! What is new is to
look at these functions as an extensional characterization of the machines, and to compare them to our extensional
characterization of synchronous systems. Usually, the standard theoretical development on sequential machines
proceeds with an equivalence relation based on state equivalence, ie. an intensional characterization.

A Mealy machine M is given as a "next-state" function YM and a "next-output-character" function 8M' which both
depend on the current state and current input character. We then extend these functions to take strings of inputs
exactl as we did when defining the Operational semantics of SYSDs in section 3.5, by iterating the next-output and
next-state functions. Precisely:

Definition 4.13: String-Functional Semantics of Mealy Machines
Let M = <TQ,q0 ,y,6> be a Mealy Machine, with the intended interpretation:

* I: alphabet (input and output)

* Q set of states

e %. initial state
* y: Q x 1 -4 Q :next-state function

* 8 : Q x I --o : next-output function
Define v(M) = A : 1* -4 1* where:

* A(E) = E ^ A(x.u) = a(x). (x),u)

Sr(c) = q0^ r(x.u) = y mr(x),u)
The fact that A is MLP should be clear. Formally, the proof would be similar to the ones in section 3.5. and is

ad



51

not repeated.

We can now easily define extensional equivalence of a Synchronous Circuit and a Mealy Machine:

Definition 4.14: Extensional Equivalence of Mealy Machines and Synchronous Circuits
Let M be a Mealy Machine, and S be a SYSD, we define M - S <=> V x E T*, v(M) (x) = g(S) (x).

Note: there is an interesting duality to this jump from state machine to string function, in that we can easily define

"states" for an arbitrary string function, and trivially obtain a Mealy machine equivalent to an MLP string-function:
* To get the states of a function F on T* , take the equivalence classes for - in F*, where:

' x- y <=> V z E I* F(xz)=F(yz).
(A "state" is simply a summary of the past good enough to account for the future.)

* To get a Mealy machine for an MLP F. take those states, and define:

y (x-,u) = (x.u)- and 8(x-,u) = last(F(x.u)) , where x- is the equivalence class of x under -.
Actually, we get the minimal state machine extensionally equivalent to F; unfortunately however, this is far from

-. constructive!

. -

,,S"



52

References

[Arnold 81] Arnold. A.
Semantique des Processus Communicants.
RAIRO Informatique Theorque. v. 15, no. 2,pp. 103-139, 1981.

[Backus 781 Backus, John.
Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its

Algebra of Programs.
Communications of the ACM, v. 21, no. 8, pp. 613-641 , 1978.

[Booth 67] Booth, Taylor L.
Sequential Machines and Automata Theory.
John Wiley & Sons, New York, 1967.

[Brock-Ackerman 81]
Brock, J. Dean. Ackerman, William B.
Scenarios: A Model of Non-determinate Computation.
In Formalization of Programming Concepts (LNCS 107), Springer-Verlag. 1981.

[Brookes 84] Brookes, Stephen D.
Reasoning about Synchronous Systems.
Technical Report, CMU-CS-84-145,Computer Science Dept., Carnegie-Mellon Univ., Pittsburgh

PA 15213, 1984.

[Burge 75] Burge, W.H.
Stream Processing Functions.
IBM Journal of Research and Development, v. 19, pp. 12-25, 1975,

[Burstall-Darlington 77]
Burstall, R. M.; Darlington, John.
A Transformation System for Developing Recursive Programs.
Journal of the ACM v. 24, no. 1, pp. 44-67, 1977.

[de Bakker 80] de Bakker, J. W.
Mathematical Theory of Program Correctness.
Englewood Cliffs, N.J., 1980.

[Dill 88] Dill, David L.
Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits.
PhD thesis, CMU-CS-88-119,Computer Science Dept., Carnegie-Mellon Univ., Pittsburgh PA

15213, 1988.

[Faustini 82a] Faustini, Antony Azio.
The Equivalence of an Operational and a Denotational Semantics for Pure Data/low .
PhD thesis, Computer Science Dept, University of Warwick, Coventry, UK, 1982.

[Faustin 82b] Faustini, A.A.
An Operational Semantics for Pure Dataflow.
In 9th Int'l Conf. on Automata, Lai guages and Programming (LNCS 140), pp. 212-224. 1982.

[Friedman-Wise 76]
Friedman, D.P., Wise, D.S.
CONS Should Not Evaluate its Arguments.
In 3rd International Colloq. on Automata, Languages and Programming, pp. 257-284. 1976.

[Glasgow-MacEwen 87]
Glasgow, Janice I.; MacEwen, Glenn H.
A Computational Model for Distributed Systems Using Operator Nets.
In PARLE Parallel Architectures and Languages Europe, v. 2 (L.NCS 259) pp. 243-260. 1987.



0 53

[Gordon 851 Gordon, M.dC.
Why Higher-Order Logic is a Good Formalism for Specifying and Verifying Hardware.
Technical Report, TR 77,Univ. of Cambridge Computer Lab,Corn Exchange St,Cambridge CB2

3QG,England, 1985.

N[Hopcroft-UUman 79]

Hopcroft, John E.; Ullman, Jeffrey D.
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts, 1979.

[Hunt 85] Hunt, Warren A. Jr.
FM8501: A Verified Microprocessor.
PhD thesis, TR 47, Institute for Computing Science, Univ. of Texas at Austin, TX 78712, 1985.

[Johnson 83] Johnson, Steven D.
Synthesis of Digital Designs from Recu, sion Equations.
PhD thesis, Indiana University, The M -Press, Cambridge, Massachusetts, 1983.

[Johnson 84] Johnson. Steven D.
Applicative Programming and Digital Design.
In 11th Syrp. on Principles of Programming Languages, Salt Lake City, pp. 218-227. 1984.

[Kahn 74] Kahn, Gilles.
The Semantics of a Simple Language for Parallel Programming.
In IFIP Congress 74, Amsterdam. pp. 993-998. 1974.

S[Kleene 67] Kleene, Stephen Cole.
Introduction to Metamathematics.
North-Holland, 1967.

[Kloos 87] Kloos, Carlos Delgado.
Semantics of Digital Circuits.
PhD thesis, Lecture Notes in Computer Science 285, Springer-Verlag, 1987.

[Landmn 65] Landin, P.J.
A Correspondence Between ALGOL 60 and Church's Lambda Notation: Part I and H .
Communications of the ACM, v. 8, no. 2,pp. 89-101, no. 3,pp. 158-165, 1965.

[Leiserson-Saxe 83]
Leiserson, Charles E.; Saxe, James B.
Optimizing Synchronous Systems.
Journal of VLSI and Computer Systems, v. 1, no. 1, pp. 41-67, 1983.

[Manna 74] Manna, Zobar.
% bMathematical Theory of Computation.

McGraw-Hill, New York, 1974.

[Manna-Waldinger 85]
Manna, Zohar; Waldinger, Richard.
The Logical Basis for Computer Programming, Vol. 1 .
Addison-Wesley, Reading, Massachusetts, 1985.

[Mano 76] Mano, M. Morris.
Computer System Architecture.
Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1976.

[Mason 86] Mason, Ian A.
The Semantics of Destructive LISP.
PhD thesis, CSLI Lecture Notes no. 5, Ventura Hall, Stanford University, CA 94305, 1986.

[Mead-Conway 80]
Mead, Carver A.; Conway, Lynn A.
Introduction to VLSI Systems.
Addison-Wesley, Reading, Massachusetts, 1980.

tN4

"li



54

[Melton-Schmidt 86]
Melton, Austin C.. Schmidt, David A.
A Topological Framework for CPOs Lacking Bottom Elements.
In Mathematical Foundations of Programming Semantics (LNCS 239). pp. 196-204. 1986.

[Moschovakis 71] Moschovakis. Yiannis N.
Axioms for Computation Theories - First Draft.
In Proc. Logic Colloquium 1969, pp. 199-255. 1971.

[Moschovakis 77] Moschovakis, Yiannis N.
On the Basic Notions in the Theory of Induction.
In Proc. Logic, Foundations of Mathematics, and Computability i r.Icory, pp. 207-236. 1977.

*€ [Moschovakis 831 Moschovakis, Yiannis N.
Abstract Recursion as a Foundation for the Theory of Algorithms.
In Proc. Logic Colloquium 1983, Lecture Notes in Math. 1104, pp.289-364. 1983.

[RusselI-Kinment-Chester-McLauchlan 85]
Russell, G.; Kinniment, D.J.; Chester, E.G.; McLauchlan, M.R.
C.A.D. for V.L.S.I. .
Van Nostrand Reinhold (UK) Co. Ltd, 1985.

R-E [Scherlis-Scott 83]

* Scherlis, William L.; Scott, Dana S.
First Steps Towards Inferential Programming.
In IFIP Congress 83, Paris, v. 9,pp. 199-212. 1983.

[Schmidt 86] Schmidt, David A.
Denotational Semantics.
Allyn and Bacon, Boston, 1986.

[Sheeran 83] Sheeran, Mary.
p.FP - an Algebraic VLSI Design Language.
PhD thesis, PRG-39, Oxford Univ. Computing Lab, 8-11 Keble Rd. Oxford OX1 3QD, England,

1983.

[Talcott 85] Talcott, Carolyn L.
The Essence of RUM: A theory of the intensional and extensional aspects of Lisp-type

computation.
, PhD thesis, STAN-CS-85-1060, Computer Science Dept., Stanford University, CA 94305, 1985.

[Talcott 86] Talcott, Carolyn.
Notes on Transformations.
1986.
Unpublished manuscript.

[van de Snepscheut 85]
van de Snepscheut, Jan L.A.
Trace Theory and VLSI Design.
PhD thesis, Lectures Notes in Computer Science 200, Springer-Verlag, 1985.

S.

>,,,-,,



55

Index
Chan 5
Complete partial order 5
Continuous 6
CPO 5

ELC 32
Extensional 27
Extensional denotation..] semantics 31

FD-CPO I I
Finite Depth domain I11
Fixed point 6
Flat domnain I I
Function domains 8

Induction algebra 7

Inienajona] 27
Intensional dernotation..! semantics 31

Kkee6

Least fixed point 6
Least upper bound 5
Length-preaerving 19
LFP 6

* Loop 32
LP 19
LSD 28

Mealy machine 50
V MLP 27

MLJ', 22
ML.P1 31

* Monotonic 6
Moachovakia 7

Operational semantics 35

Partial order 5
Path 32
PCPO s
PO05
Pointed complete partial! order 5
Prreceaor 32

N.

Simulation sentica 41
String induction algebra 22

*String atnactum 1s
Stwings of apartial orde 16
Strongly admisaible 8
Sub-CPO S
SYSD 28

-I. Upper bound 5

0
.e%



0
56

V

4'.,

4/

44

-4-

.44
45

0

-~: ~
*1.~..5.
--. 5

-p
5.-

5~%

44
.5,

is
N-

4.-.

-5
-l

/5
4.
-. 5

.5-

0
-'.4
5~55.*

*'.*~
.31.5

SI-
4-.
.4.

.35..

S

5%

a

S
'V
'5

*.I.
V.

'I'

.5. .~fh' *~~~(45 - - ~ '.p ~ . . .5. SIr - ... 5..5.


